Masterminds
of Programming

Conversations with the Creators
of Major Programming Languages

Software Programming

Masterminds of Programming

Masterminds of Programming features exclusive interviews with the creators of several
historic and highly influential programming languages. In this unique interview collection,
you'll learn about the processes that led to specific design decisions, including the goals
these pioneers had in mind, the trade-offs they had to make, and how their experiences
have made an impact on programming today. This book includes interviews with:

Adin D. Falkoff: APL

Thomas E. Kurtz: BASIC

Charles H. Moore: FORTH

Robin Milner: ML

Donald D. Chamberlin: SQL

Alfred Aho, Peter Weinberger, and Brian Kernighan: AWK
Charles Geschke and John Warnock: PostScript

Bjarne Stroustrup: C++

Bertrand Meyer: Eiffel

Brad Cox and Tom Love: Objective-C

Larry Wall: Perl

Simon Peyton Jones, Paul Hudak, Philip Wadler, and John Hughes: Haskell
Guido van Rossum: Python

Luiz Henrique de Figueiredo and Roberto lerusalimschy: Lua
James Gosling: Java

Grady Booch, Ivar Jacobson, and James Rumbaugh: UML
Anders Hejlsberg: Delphi inventor and lead developer of C#

If you're interested in the people whose vision and hard work helped shape the computer
industry, you'll find Masterminds of Programming fascinating.

About the Interviewers:

Federico Biancuzzi is a freelance interviewer whose interviews have appeared on many
online publications including ONLamp, NewsForge, TheRegister, ArsTechnica, and more.

Shane Warden is a free software developer with an interest in programming language
design and virtual machines. In his spare time, he runs the fiction division of independent
publisher Onyx Neon Press. He is coauthor of The Art of Agile Development (O'Reilly).

> F

ree online edition
US $39.99 CAN $39.99 Sa fa rl for 45 days with purchase of
ISBN: 978-0-596-51517-1 Books Online this book. Details on last page.

53999
WAWAWIINN Wi O’REILLY ® wwworeitycon

Download at Boykma.Com

Masterminds of
Programming

Edited by Federico Biancuzzi and Shane Warden

O’REILLY"

Beijing * Cambridge ¢ Farnham ¢ K&In * Sebastopol Taipei * Tokyo

Download at Boykma.Com

Masterminds of Programming
Edited by Federico Biancuzzi and Shane Warden

Copyright © 2009 Federico Biancuzzi and Shane Warden. All rights reserved. Printed in the
United States of America.
Published by O’Reilly Media, Inc. 1005 Gravenstein Highway North, Sebastopol, CA 95472

O'Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (safari.oreilly.com). For more information, contact our

corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Andy Oram Proofreader: Nancy Kotary
Production Editor: Rachel Monaghan Cover Designer: Monica Kamsvaag
Indexer: Angela Howard Interior Designer: Marcia Friedman

Printing History:
March 2009: First Edition.

The O’Reilly logo is a registered trademark of O'Reilly Media, Inc. Masterminds of Programming and
related trade dress are trademarks of O’Reilly Media, Inc. Many of the designations used by
manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark claim, the

designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the

information contained herein.

ISBN: 978-0-596-51517-1
[Vl

Download at Boykma.Com

http://safari.oreilly.com
mailto:corporate@oreilly.com
mailto:corporate@oreilly.com

FOREWORD
PREFACE

C++

Bjarne Stroustrup
Design Decisions
Using the Language
OOP and Concurrency
Future
Teaching

PYTHON

Guido von Rossum
The Pythonic Way
The Good Programmer
Multiple Pythons
Expedients and Experience

APL
Adin D. Falkoff

Paper and Pencil

Elementary Principles

Parallelism

Legacy

FORTH
Charles D. Moore

The Forth Language and Language Design

Hardware

Application Design

BASIC
Thomas E. Kurtz
The Goals Behind BASIC
Compiler Design
Language and Programming Practice
Language Design
Work Goals

Download at Boykma.Com

CONTENTS

vii

13
16

19

20
27
32
37

43

44
47
53
56

59

60
67
71

79

80
86
90
91
97

iv CONTENTS

10

AWK

Alfred Aho, Peter Weinberger, and Brian Kernighan
The Life of Algorithms
Language Design
Unix and Its Culture
The Role of Documentation
Computer Science
Breeding Little Languages
Designing a New Language
Legacy Culture
Transformative Technologies
Bits That Change the Universe
Theory and Practice
Waiting for a Breakthrough
Programming by Example

LUA
Luiz Henrique de Figueiredo and Roberto lerusalimschy
The Power of Scripting
Experience
Language Design

HASKELL

Simon Peyton Jones, Paul Hudak, Philip Wadler,
and John Hughes

A Functional Team

Trajectory of Functional Programming
The Haskell Language

Spreading (Functional) Education
Formalism and Evolution

ML

Robin Milner
The Soundness of Theorems
The Theory of Meaning
Beyond Informatics

SQL

Don Chamberlin
A Seminal Paper
The Language
Feedback and Evolution
XQuery and XML

Download at Boykma.Com

101

102
104
106

114
116

129
132
137
142
149
154

161

162
165
169

177

178
180
187
194
196

203

204
212
218

225

226
229
233
238

11

12

13

14

OBJECTIVE-C

Brad Cox and Tom Love
Engineering Objective-C
Growing a Language
Education and Training

Project Management and Legacy Software

Objective-C and Other Languages
Components, Sand, and Bricks
Quality As an Economic Phenomenon
Education

JAVA

James Gosling
Power or Simplicity
A Matter of Taste
Concurrency
Designing a Language
Feedback Loop

C#
Anders Hejlsberg

Language and Design
Growing a Language
C#

The Future of Computer Science

UML

lvar Jacobson, James Rumbaugh, and Grady Booch

Learning and Teaching
The Role of the People
UML

Knowledge

Be Ready for Change
Using UML

Layers and Languages

A Bit of Reusability
Symmetric Relationships
UML

Language Design
Training Developers
Creativity, Refinement, and Patterns

Download at Boykma.Com

241

242
244
249
251
258
263
269
272

277

278
281
285
287
291

295

296
302
306
311

317

318
323
328
331
334
339
343
348
352
356
358
364
366

CONTENTS v

vi CONTENTS

15

16

17

PERL
Larry Wall
The Language of Revolutions
Language
Community
Evolution and Revolution

POSTSCRIPT

Charles Geschke and John Warnock

Designed to Last
Research and Education
Interfaces to Longevity
Standard Wishes

EIFFEL
Bertrand Meyer

An Inspired Afternoon
Reusability and Genericity
Proofreading Languages
Managing Growth and Evolution

AFTERWORD
CONTRIBUTORS

INDEX

Download at Boykma.Com

375

376
380
386
389

395

396
406
410
414

417

418
425
429
436

441

443

459

Foreword

PROGRAMMING LANGUAGE DESIGN IS A FASCINATING TOPIC. There are so many programmers
who think they can design a programming language better than one they are currently
using; and there are so many researchers who believe they can design a programming lan-
guage better than any that are in current use. Their beliefs are often justified, but few of
their designs ever leave the designer’s bottom drawer. You will not find them represented
in this book.

Programming language design is a serious business. Small errors in a language design can
be conducive to large errors in an actual program written in the language, and even small
errors in programs can have large and extremely costly consequences. The vulnerabilities
of widely used software have repeatedly allowed attack by malware to cause billions of
dollars of damage to the world economy. The safety and security of programming lan-
guages is a recurrent theme of this book.

Download at Boykma.Com

vii

viii

FOREWORD

Programming language design is an unpredictable adventure. Languages designed for uni-
versal application, even when supported and sponsored by vast organisations, end up
sometimes in just a niche market. In contrast, languages designed for limited or local use
can win a broad clientele, sometimes in environments and for applications that their
designers never dreamed of. This book concentrates on languages of the latter kind.

These successful languages share a significant characteristic: each of them is the brainchild
of a single person or a small team of like-minded enthusiasts. Their designers are master-
minds of programming; they have the experience, the vision, the energy, the persistence,
and the sheer genius to drive the language through its initial implementation, through its
evolution in the light of experience, and through its standardisation by usage (de facto)
and by committee (de jure).

In this book the reader will meet this collection of masterminds in person. Each of them
has granted an extended interview, telling the story of his language and the factors that lie
behind its success. The combined role of good decisions and good luck is frankly acknowl-
edged. And finally, the publication of the actual words spoken in the interview gives an
insight into the personality and motivations of the designer, which is as fascinating as the
language design itself.

—Sir Tony Hoare

Sir Tony Hoare, winner of an ACM Turing Award and a Kyoto Award, has been a leader in research
into computing algorithms and programming languages for 50 years. His first academic paper, writ-

ten in 1969, explored the idea of proving the correctness of programs, and suggested that a goal of pro-
gramming language design was to make it easier to write correct programs. He is delighted to see the

idea spread gradually among programming language designers.

Download at Boykma.Com

Preface

WRITING SOFTWARE IS HARD—AT LEAST, WRITING SOFTWARE THAT STANDS UP UNDER TESTS, TIME,
and different environments is hard. Not only has the software engineering field struggled
to make writing software easier over the past five decades, but languages have been
designed to make it easier. But what makes it hard in the first place?

Most of the books and the papers that claim to address this problem talk about architec-
ture, requirements, and similar topics that focus on the software. What if the hard part was
in the writing? To put it another way, what if we saw our jobs as programmers more in
terms of communication—/anguage—and less in terms of engineering?

Children learn to talk in their first years of life, and we start teaching them how to read
and write when they are five or six years old. I don’t know any great writer who learned
to read and write as an adult. Do you know any great programmer who learned to pro-
gram late in life?

And if children can learn foreign languages much more easily than adults, what does this
tell us about learning to program—an activity involving a new language?

Download at Boykma.Com

Imagine that you are studying a foreign language and you don’t know the name of an
object. You can describe it with the words that you know, hoping someone will under-
stand what you mean. Isn’t this what we do every day with software? We describe the
object we have in our mind with a programming language, hoping the description will be
clear enough to the compiler or interpreter. If something doesn’t work, we bring up the
picture again in our mind and try to understand what we missed or misdescribed.

With these questions in mind, I chose to launch a series of investigations into why a pro-
gramming language is created, how it’s technically developed, how it’s taught and
learned, and how it evolves over time.

Shane and I had the great privilege to let 27 great designers guide us through our journey,
so that we have been able to collect their wisdom and experience for you.

In Masterminds of Programming, you will discover some of the thinking and steps needed to
build a successful language, what makes it popular, and how to approach the current
problems that its programmers are facing. So if you want to learn more about successful
programming language design, this book surely can help you.

If you are looking for inspiring thoughts regarding software and programming languages,
you will need a highlighter, or maybe two, because I promise that you will find plenty of
them throughout these pages.

—Federico Biancuzzi

Organization of the Material

The chapters in this book are ordered to provide a varied and provocative perspective as
you travel through it. Savor the interviews and return often.

Chapter 1, C++, interviews Bjarne Stroustrup.

Chapter 2, Python, interviews Guido van Rossum.

Chapter 3, APL, interviews Adin D. Falkoff.

Chapter 4, Forth, interviews Charles H. Moore.

Chapter 5, BASIC, interviews Thomas E. Kurtz.

Chapter 6, AWK, interviews Alfred Aho, Peter Weinberger, and Brian Kernighan.
Chapter 7, Lua, interviews Luiz Henrique de Figueiredo and Roberto Ierusalimschy.

Chapter 8, Haskell, interviews Simon Peyton Jones, Paul Hudak, Philip Wadler, and John
Hughes.

Chapter 9, ML, interviews Robin Milner.

Chapter 10, SQL, interviews Don Chamberlin.

x PREFACE Download at Boykma.Com

Chapter 11, Objective-C, interviews Tom Love and Brad Cox.

Chapter 12, Java, interviews James Gosling.

Chapter 13, C#, interviews Anders Hejlsberg.

Chapter 14, UML, interviews Ivar Jacobson, James Rumbaugh, and Grady Booch.
Chapter 15, Perl, interviews Larry Wall.

Chapter 16, PostScript, interviews Charles Geschke and John Warnock.

Chapter 17, Eiffel, interviews Bertrand Meyer.

Contributors lists the biographies of all the contributors.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, filenames, and utilities.

Constant width
Indicates the contents of computer files and generally anything found in programs.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596515171
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly
Network, see our website at:

http://www.oreilly.com

Download at Boykma.Com PREFACE

xi

http://www.oreilly.com/catalog/9780596515171
mailto:bookquestions@oreilly.com
http://www.oreilly.com

Safari Books Online

. When you see a Safari® Books Online icon on the cover of your favorite
X] 7
Safa rl ~ technology book, that means the book is available online through the
Books Online O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters, and
find quick answers when you need the most accurate, current information. Try it for free
at http://my.safaribooksonline.com.

xii PREFACE Download at Boykma.Com

http://www.oreilly.com
http://my.safaribooksonline.com

CHAPTER ONE

C++

C++ occupies an interesting space among languages: it is built on the foundation of
C, incorporating object-orientation ideas from Simula; standardized by I1SO; and
designed with the mantras “you don’t pay for what you don’t use” and “support
user-defined and built-in types equally well.” Although popularized in the 80s
and 90s for OO and GUI programming, one of its greatest contributions to software
is its pervasive generic programming techniques, exemplified in its Standard Tem-
plate Library. Newer languages such as Java and C# have attempted to replace C++,
but an upcoming revision of the C++ standard adds new and long-awaited fea-
tures. Bjarne Stroustrup is the creator of the language and still one of its strongest
advocates.

Download at Boykma.Com

2

CHAPTER ONE

Design Decisions

Why did you choose to extend an existing language instead of creating a new one?

Bjarne Stroustrup: When I started—in 1979—my purpose was to help programmers
build systems. It still is. To provide genuine help in solving a problem, rather than being
just an academic exercise, a language must be complete for the application domain. That
is, a non-research language exists to solve a problem. The problems I was addressing
related to operating system design, networking, and simulation. I—and my colleagues—
needed a language that could express program organization as could be done in Simula
(that’s what people tend to call object-oriented programming), but also write efficient
low-level code, as could be done in C. No language that could do both existed in 1979, or
I would have used it. I didn’t particularly want to design a new programming language; I
just wanted to help solve a few problems.

Given that, building on an existing language makes a lot of sense. From the base language,
you get a basic syntactic and semantic structure, you get useful libraries, and you become
part of a culture. Had I not built on C, I would have based C++ on some other language.
Why C? I had Dennis Ritchie, Brian Kernighan, and other Unix greats just down (or
across) the hall from me in Bell Labs’ Computer Science Research Center, so the question
may seem redundant. But it was a question I took seriously.

In particular, C’s type system was informal and weakly enforced (as Dennis Ritchie said,
“C is a strongly typed, weakly checked language”). The “weakly checked” part worried me
and causes problems for C++ programmers to this day. Also, C wasn’t the widely used lan-
guage it is today. Basing C++ on C was an expression of faith in the model of computation
that underlies C (the “strongly typed” part) and an expression of trust in my colleagues.
The choice was made based on knowledge of most higher-level programming languages
used for systems programming at the time (both as a user and as an implementer). It is
worth remembering that this was a time when most work “close to the hardware” and
requiring serious performance was still done in assembler. Unix was a major breakthrough in
many ways, including its use of C for even the most demanding systems programming tasks.

So, I chose C’s basic model of the machine over better-checked type systems. What I really
wanted as the framework for programs was Simula’s classes, so I mapped those into the C
model of memory and computation. The result was something that was extremely expres-
sive and flexible, yet ran at a speed that challenged assembler without a massive runtime

support system.

Why did you choose to support multiple paradigms?

Bjarne: Because a combination of programming styles often leads to the best code, where
“best” means code that most directly expresses the design, runs faster, is most maintain-
able, etc. When people challenge that statement, they usually do so by either defining their
favorite programming style to include every useful construct (e.g., “generic programming is
simply a form of O0”) or excluding application areas (e.g., “everybody has a 1GHz, 1GB
machine”).

Download at Boykma.Com

Java focuses solely on object-oriented programming. Does this make Java code more
complex in some cases where C++ can instead take advantage of generic programming?

Bjarne: Well, the Java designers—and probably the Java marketers even more so—
emphasized OO to the point where it became absurd. When Java first appeared, claiming
purity and simplicity, I predicted that if it succeeded Java would grow significantly in size
and complexity. It did.

For example, using casts to convert from Object when getting a value out of a container
(e.g., (Apple)c.get(i)) is an absurd consequence of not being able to state what type the
objects in the container is supposed have. It’s verbose and inefficient. Now Java has gener-
ics, so it’s just a bit slow. Other examples of increased language complexity (helping the
programmer) are enumerations, reflection, and inner classes.

The simple fact is that complexity will emerge somewhere, if not in the language defini-
tion, then in thousands of applications and libraries. Similarly, Java’s obsession with put-
ting every algorithm (operation) into a class leads to absurdities like classes with no data
consisting exclusively of static functions. There are reasons why math uses f(x) and f(x,y)
rather than x.f(), x.f(y), and (x,y).f()—the latter is an attempt to express the idea of a
“truly object-oriented method” of two arguments and to avoid the inherent asymmetry of
x.f(y).

C++ addresses many of the logical as well as the notational problems with object orienta-
tion through a combination of data abstraction and generic programming techniques. A
classical example is vector<T> where T can be any type that can be copied—including built-
in types, pointers to OO hierarchies, and user-defined types, such as strings and complex
numbers. This is all done without adding runtime overheads, placing restrictions on data
layouts, or having special rules for standard library components. Another example that
does not fit the classical single-dispatch hierarchy model of OO is an operation that
requires access to two classes, such as operator*(Matrix,Vector), which is not naturally a
“method” of either class.

One fundamental difference between C++ and Java is the way pointers are implemented.
In some ways, you could say that Java doesn’t have real pointers. What differences are
there between the two approaches?

Bjarne: Well, of course Java has pointers. In fact, just about everything in Java is implic-
itly a pointer. They just call them references. There are advantages to having pointers
implicit as well as disadvantages. Separately, there are advantages to having true local
objects (as in C++) as well as disadvantages.

C++’s choice to support stack-allocated local variables and true member variables of every
type gives nice uniform semantics, supports the notion of value semantics well, gives com-
pact layout and minimal access costs, and is the basis for C++’s support for general
resource management. That’s major, and Java’s pervasive and implicit use of pointers (aka
references) closes the door to all that.

Download at Boykma.Com

C++

Consider the layout tradeoff: in C++ a vector<complex>(10) is represented as a handle to an
array of 10 complex numbers on the free store. In all, that’s 25 words: 3 words for the vec-
tor, plus 20 words for the complex numbers, plus a 2-word header for the array on the
free store (heap). The equivalent in Java (for a user-defined container of objects of user-
defined types) would be 56 words: 1 for the reference to the container, plus 3 for the con-
tainer, plus 10 for the references to the objects, plus 20 for the objects, plus 24 for the free
store headers for the 12 independently allocated objects. Obviously, these numbers are
approximate because the free store (heap) overhead is implementation defined in both
languages. However, the conclusion is clear: by making references ubiquitous and implicit,
Java may have simplified the programming model and the garbage collector implementa-
tion, but it has increased the memory overhead dramatically—and increased the memory
access cost (requiring more indirect accesses) and allocation overheads proportionally.

What Java doesn’t have—and good for Java for that—is C and C++'s ability to misuse
pointers through pointer arithmetic. Well-written C++ doesn’t suffer from that problem
either: people use higher-level abstractions, such as iostreams, containers, and algorithms,
rather than fiddling with pointers. Essentially all arrays and most pointers belong deep in
implementations that most programmers don’t have to see. Unfortunately, there is also
lots of poorly written and unnecessarily low-level C++ around.

There is, however, an important place where pointers—and pointer manipulation—is a
boon: the direct and efficient expression of data structures. Java’s references are lacking
here; for example, you can’t express a swap operation in Java. Another example is simply
the use of pointers for low-level direct access to (real) memory; for every system, some
language has to do that, and often that language is C++.

The “dark side” of having pointers (and C-style arrays) is of course the potential for mis-
use: buffer overruns, pointers into deleted memory, uninitialized pointers, etc. However,
in well-written C++ that is not a major problem. You simply don’t get those problems with
pointers and arrays used within abstractions (such as vector, string, map, etc.). Scoped
resource management takes care of most needs; smart pointers and specialized handles
can be used to deal with most of the rest. People whose experience is primarily C or old-
style C++ find this hard to believe, but scope-based resource management is an immensely
powerful tool and user-defined with suitable operations can address classical problems
with less code than the old insecure hacks. For example, this is the simplest form of the
classical buffer overrun and security problem:

char buf[MAX BUF];
gets(buf); // Yuck!

Use a standard library string and the problem goes away:

string s;
cin >> s; // read whitespace separated characters

These are obviously trivial examples, but suitable “strings” and “containers” can be crafted
to meet essentially all needs, and the standard library provides a good set to start with.

% CHAPTER ONE Download at Boykma.Com

What do you mean by “value semantics” and “¢eneral resource management”?

Bjarne: “Value semantics” is commonly used to refer to classes where the objects have the
property that when you copy one, you get two independent copies (with the same value).
For example:

X x1 = a;

X x2 = x1; // now x1==x2

x1 = b; // changes x1 but not x2

// now x1!=x2 (provided X(a)!=X(b))

This is of course what we have for usual numeric types, such as ints, doubles, complex
numbers, and mathematical abstractions, such as vectors. This is a most useful notion,
which C++ supports for built-in types and for any user-defined type for which we want it.
This contrast to Java where built-in types such and char and int follow it, but user-defined
types do not, and indeed cannot. As in Simula, all user-defined types in Java have refer-
ence semantics. In C++, a programmer can support either, as the desired semantics of a
type requires. C# (incompletely) follows C++ in supporting user-defined types with value
semantics.

“General resource management” refers to the popular technique of having a resource (e.g.,
a file handle or a lock) owned by an object. If that object is a scoped variable, the lifetime
of the variable puts a maximum limit on the time the resource is held. Typically, a con-
structor acquires the resource and the destructor releases it. This is often called RAIL
(Resource Acquisition Is Initialization) and integrates beautifully with error handling
using exceptions. Obviously, not every resource can be handled in this way, but many
can, and for those, resource management becomes implicit and efficient.

“Close to the hardware” seems to be a guiding principle in designing C++. Is it fair to say
that C++ was designed more bottom-up than many languages, which are designed top-
down, in the sense that they try to provide abstractly rational constructs and force the
compiler to fit these constructs to the available computing environment?

Bjarne: I think top-down and bottom-up are the wrong way to characterize those design
decisions. In the context of C++ and other languages, “close to the hardware” means that
the model of computation is that of the computer—sequences of objects in memory and
operations as defined on objects of fixed size—rather than some mathematical abstraction.
This is true for both C++ and Java, but not for functional languages. C++ differs from Java
in that its underlying machine is the real machine rather than a single abstract machine.

The real problem is how to get from the human conception of problems and solutions to
the machine’s limited world. You can “ignore” the human concerns and end up with
machine code (or the glorified machine code that is bad C code). You can ignore the
machine and come up with a beautiful abstraction that can do anything at extraordinary
cost and/or lack of intellectual rigor. C++ is an attempt to give a very direct access to hard-
ware when you need it (e.g., pointers and arrays) while providing extensive abstraction
mechanisms to allow high-level ideas to be expressed (e.g., class hierarchies and templates).

Download at Boykma.Com C++

That said, there has been a consistent concern for runtime and space performance
throughout the development of C++ and its libraries. This pervades both the basic lan-
guage facilities and the abstraction facilities in ways that are not shared by all languages.

Using the Languagde

How do you debug? Do you have any suggestion for C++ developers?

Bjarne: By introspection. I study the program for so long and poke at it more or less sys-
tematically for so long that T have sufficient understanding to provide an educated guess
where the bug is.

Testing is something else, and so is design to minimize errors. I intensely dislike debugging
and will go a long way to avoid it. If I am the designer of a piece of software, I build it
around interfaces and invariants so that it is hard to get seriously bad code to compile and
run incorrectly. Then, I try hard to make it testable. Testing is the systematic search for
errors. It is hard to systematically test badly structured systems, so I again recommend a
clean structure of the code. Testing can be automated and is repeatable in a way that
debugging is not. Having flocks of pigeons randomly peck at the screen to see if they can
break a GUI-based application is no way to ensure quality systems.

Advice? It is hard to give general advice because the best techniques often depend on
what is feasible for a given system in a given development environment. However: iden-
tity key interfaces that can be systematically tested and write test scripts that exercise
those. Automate as much as you can and run those automated tests often. And do keep
regression tests and run them frequently. Make sure that every entry point into the sys-
tem and every output can be systematically tested. Compose your system out of quality
components: monolithic programs are unnecessarily hard to understand and test.

At what level is it necessary to improve the security of software?

Bjarne: First of all: security is a systems issue. No localized or partial remedy will by itself
succeed. Remember, even if all of your code was perfect, I could probably still gain access
to your stored secrets if I could steal your computer or the storage device holding your
backup. Secondly, security is a cost/benetit game: perfect security is probably beyond the
reach for most of us, but I can probably protect my system sufficiently that “bad guys” will
consider their time better spent trying to break into someone else’s system. Actually, I pre-
fer not to keep important secrets online and leave serious security to the experts.

But what about programming languages and programming techniques? There is a danger-
ous tendency to assume that every line of code has to be “secure” (whatever that means),
even assuming that someone with bad intentions messes with some other part of the sys-
tem. This is a most dangerous notion that leaves the code littered with unsystematic tests
guarding against ill-formulated imagined threats. It also makes code ugly, large, and slow.
“Ugly” leaves places for bugs to hide, “large” ensures incomplete testing, and “slow”
encourages the use of shortcuts and dirty tricks that are among the most fertile sources of
security holes.

6 CHAPTER ONE Download at Boykma.Com

I think the only permanent solution to security problems is in a simple security model applied
systematically by quality hardware and/or software to selected interfaces. There has to be a
place behind a barrier where code can be written simply, elegantly, and efficiently without
worrying about random pieces of code abusing random pieces of other code. Only then can
we focus on correctness, quality, and serious performance. The idea that anyone can provide
an untrusted callback, plug-in, overrider, whatever, is plain silly. We have to distinguish
between code that defends against fraud, and code that simply is protected against accidents.

I do not think that you can design a programming language that is completely secure and
also usetul for real-world systems. Obviously, that depends on the meaning of “secure”
and “system.” You could possibly achieve security in a domain-specific language, but my
main domain of interest is systems programming (in a very broad meaning of that term),
including embedded systems programming. I do think that type safety can and will be
improved over what is offered by C++, but that is only part of the problem: type safety
does not equal security. People who write C++ using lots of unencapsulated arrays, casts,
and unstructured new and delete operations are asking for trouble. They are stuck in an 80s
style of programming. To use C++ well, you have to adopt a style that minimizes type safety
violations and manage resources (including memory) in a simple and systematic way.

Would you recommend C++ for some systems where practitioners are reluctant to use it,
such as system software and embedded applications?

Bjarne: Certainly, I do recommend it and not everybody is reluctant. In fact, I don't see
much reluctance in those areas beyond the natural reluctance to try something new in
established organizations. Rather, I see steady and significant growth in C++ use. For exam-
ple, I helped write the coding guidelines for the mission-critical software for Lockheed Mar-
tin’s Joint Strike Fighter. That’s an “all C++ plane.” You may not be particularly keen on
military planes, but there is nothing particularly military about the way C++ is used and well
over 100,000 copies of the JSF++ coding rules have been downloaded from my home pages
in less than a year, mostly by nonmilitary embedded systems developers, as far as I can tell.

C++ has been used for embedded systems since 1984, many useful gadgets have been pro-
grammed in C++, and its use appears to be rapidly increasing. Examples are mobile
phones using Symbian or Motorola, the iPods, and GPS systems. I particularly like the use
of C++ on the Mars rovers: the scene analysis and autonomous driving subsystems, much
of the earth-based communication systems, and the image processing.

People who are convinced that C is necessarily more efficient than C++ might like to have
a look at my paper entitled “Learning Standard C++ as a New Language” [C/C++ Users
Journal, May 1999], which describes a bit of design philosophy and shows the result of a
few simple experiments. Also, the ISO C++ standards committee issued a technical report
on performance that addresses a lot of issues and myths relating to the use of C++ where
performance matters (you can find it online searching for “Technical Report on C++ Per-
formance”).* In particular, that report addresses embedded systems issues.

* http://www.open-std.org/JTC1/sc22/wg21/docs/TR18015.pdf

Download at Boykma.Com C++

http://www.open-std.org/JTC1/sc22/wg21/docs/TR18015.pdf

Kernels like Linux’s or BSD’s are still written in C. Why haven’t they moved to C++7? Is it
something in the OO paradigm?

Bjarne: It’s mostly conservatism and inertia. In addition, GCC was slow to mature. Some
people in the C community seem to maintain an almost willful ignorance based on
decade-old experiences. Other operating systems and much systems programming and
even hard real-time and safety-critical code has been written in C++ for decades. Consider
some examples: Symbian, IBM’s 0S/400 and K42, BeOS, and parts of Windows. In gen-
eral, there is a lot of open source C++ (e.g., KDE).

You seem to equate C++ use with OO. C++ is not and was never meant to be just an
object-oriented programming language. I wrote a paper entitled “Why C++ is not just an
Object-Oriented Programming Language” in 1995; it is available online.” The idea was and is
to support multiple programming styles (“paradigms,” if you feel like using long words) and
their combinations. The most relevant other paradigm in the context of high-performance
and close-to-the-hardware use is generic programming (sometimes abbreviated to GP). The
ISO C++ standard library is itself more heavily GP than OO through its framework for
algorithms and containers (the STL). Generic programming in the typical C++ style relying
heavily on templates is widely used where you need both abstraction and performance.

I have never seen a program that could be written better in C than in C++. I don’t think
such a program could exist. If nothing else, you can write C++ in a style close to that of C.
There is nothing that requires you to go hog-wild with exceptions, class hierarchies, or
templates. A good programmer uses the more advanced features where they help more
directly to express ideas and do so without avoidable overheads.

Why should a programmer move his code from C to C++? What advantages would he
have using C++ as a generic programming language?

Bjarne: You seem to assume that code first was written in C and that the programmer
started out as a C programmer. For many—probably most—C++ programs and C++ pro-
grammers, that has not been the case for quite a while. Unfortunately, the “C first”
approach lingers in many curricula, but it is no longer something to take for granted.

Someone might switch from C to C++ because they found C++’s support for the styles of
programming usually done with C is better than C’s. The C++ type checking is stricter
(you can’t forget to declare a function or its argument types) and there is type-safe nota-
tional support for many common operations, such as object creation (including initializa-
tion) and constants. I have seen people do that and be very happy with the problems they
left behind. Usually, that’s done in combination with the adoption of some C++ libraries
that may or may not be considered object-oriented, such as the standard vector, a GUI
library, or some application-specific library.

* http://www.research.att.com/~bs/oopsla.pdf

8 CHAPTER ONE Download at Boykma.Com

http://www.research.att.com/~bs/oopsla.pdf

Just using a simple user-defined type, such as vector, string, or complex, does not require a
paradigm shift. People can—if they so choose—use those just like the built-in types. Is
someone using std: :vector “using O0”? I would say no. Is someone using a C++ GUI
without actually adding new functionality “using OO”? I'm inclined to say yes, because
their use typically requires the users to understand and use inheritance.

Using C++ as “a generic-programming programming language” gives you the standard
containers and algorithms right out of box (as part of the standard library). That is major
leverage in many applications and a major step up in abstraction from C. Beyond that,
people can start to benefit from libraries, such as Boost, and start to appreciate some of the
functional programming techniques inherent in generic programming.

However, I think the question is slightly misleading. I don’t want to represent C++ as “an
OO language” or “a GP language”; rather, it is a language supporting:

e (C-style programming
e Data abstraction
¢ Object-oriented programming

e Generic programming

Crucially, it supports programming styles that combines those (“multiparadigm program-
ming” if you must) and does so with a bias toward systems programming.

OOP and Concurrency

The average complexity and size (in number of lines of code) of software seems to grow
year after year. Does OOP scale well to this situation or just make things more
complicated? | have the feeling that the desire to make reusable objects makes things
more complicated and, in the end, it doubles the workload. First, you have to desig¢n a
reusable tool. Later, when you need to make a change, you have to write something that
exactly fits the gap left by the old part, and this means restrictions on the solution.

Bjarne: That’s a good description of a serious problem. OO is a powerful set of techniques
that can help, but to be a help, it must be used well and for problems where the tech-
niques have something to offer. A rather serious problem for all code relying on inherit-
ance with statically checked interfaces is that to design a good base class (an interface to
many, yet unknown, classes) we require a lot of foresight and experience. How does the
designer of the base class (abstract class, interface, whatever you choose to call it) know
that it specifies all that is needed for all classes that will be derived from it in the future?
How does the designer know that what is specified can be implemented reasonably by all
classes that will be derived from it in the future? How does the designer of the base class
know that what is specified will not seriously interfere with something that is needed by
some classes that will be derived from it in the future?

Download at Boykma.Com C++

10

CHAPTER ONE

In general, we can’t know that. In an environment where we can enforce our design, peo-
ple will adapt—often by writing ugly workarounds. Where no one organization is in
charge, many incompatible interfaces emerge for essentially the same functionality.

Nothing can solve these problems in general, but generic programming seems to be an
answer in many important cases where the OO approach fails. A noteworthy example is
simply containers: we cannot express the notion of being an element well through an
inheritance hierarchy, and we can’t express the notion of being a container well through
an inheritance hierarchy. We can, however, provide effective solutions using generic pro-
gramming. The STL (as found in the C++ standard library) is an example.

Is this problem specific to C++, or does it afflict other programming languages as well?

Bjarne: The problem is common to all languages that rely on statically checked interfaces
to class hierarchies. Examples are C++, Java, and C#, but not dynamically typed lan-
guages, such as Smalltalk and Python. C++ addresses that problem through generic pro-
gramming, where the C++ containers and algorithms in standard library provide a good
example. The key language feature here is templates, providing a late type-checking
model that gives a compile time equivalent to what the dynamically typed languages do at
runtime. Java’s and C#’s recent addition of “generics” are attempts to follow C++’s lead
here, and are often—incorrectly, I think—claimed to improve upon templates.

“Refactoring” is especially popular as an attempt to address that problem by the brute
force technique of simply reorganizing the code when it has outlived its initial interface
design.

If this is a problem of OO in general, how can we be sure that the advantages of OO are
more valuable than the disadvantages? Maybe the problem that a good OO design is
difficult to achieve is the root of all other problems.

Bjarne: The fact that there is a problem in some or even many cases doesn’t change the
fact that many beautiful, efficient, and maintainable systems have been written in such
languages. Object-oriented design is one of the fundamental ways of designing systems
and statically checked interfaces provide advantages as well as this problem.

There is no one “root of all evil” in software development. Design is hard in many ways.
People tend to underestimate the intellectual and practical difficulties involved in building
a significant system involving software. It is not and will not be reduced to a simple
mechanical “assembly line” process. Creativity, engineering principles, and evolutionary
change are needed to create a satisfactory large system.

Are there links between the OO paradigm and concurrency? Does the current pervasive
need for improved concurrency change the implementation of designs or the nature of
00 designs?

Bjarne: There is a very old link between object-oriented programming and concur-
rency. Simula 67, the programming language that first directly supported object-
oriented programming, also provided a mechanism for expressing concurrent activities.

Download at Boykma.Com

The first C++ library was a library supporting what today we would call threads. At Bell
Labs, we ran C++ on a six-processor machine in 1988 and we were not alone in such uses.
In the 90s there were at least a couple of dozen experimental C++ dialects and libraries
attacking problems related to distributed and parallel programming. The current excite-
ment about multicores isn’t my first encounter with concurrency. In fact, distributed com-
puting was my Ph.D. topic and I have followed that field ever since.

However, people who first consider concurrency, multicores, etc., often confuse them-
selves by simply underestimating the cost of running an activity on a different processor.
The cost of starting an activity on another processor (core) and for that activity to access
data in the “calling processor’s” memory (either copying or accessing “remotely”) can be
1,000 times (or more) higher than we are used to for a function call. Also, the error possi-
bilities are significantly different as soon as you introduce concurrency. To effectively
exploit the concurrency offered by the hardware, we need to rethink the organization of

our software.

Fortunately, but confusingly, we have decades’ worth of research to help us. Basically,
there is so much research that it’s just about impossible to determine what’s real, let alone
what’s best. A good place to start looking would be the HOPL-III paper about Emerald.
That language was the first to explore the interaction between language issues and sys-
tems issues, taking cost into account. It is also important to distinguish between data par-
allel programming as has been done for decades—mostly in FORTRAN—for scientific
calculations, and the use of communicating units of “ordinary sequential code” (e.g., pro-
cesses and threads) on many processors. I think that for broad acceptance in this brave
new world of many “cores” and clusters, a programming system must support both kinds
of concurrency, and probably several varieties of each. This is not at all easy, and the
issues go well beyond traditional programming language issues—we will end up looking at
language, systems, and applications issues in combination.

Is C++ ready for concurrency? Obviously we can create libraries to handle everything,
but does the language and standard library need a serious review with concurrency in
mind?

Bjarne: Almost. C++0x will be. To be ready for concurrency, a language first has to have a
precisely specified memory model to allow compiler writers to take advantage of modern
hardware (with deep pipelines, large caches, branch-prediction buffers, static and dynamic
instruction reordering, etc.). Then, we need a few small language extensions: thread-local
storage and atomic data types. Then, we can add support for concurrency as libraries. Nat-
urally, the first new standard library will be a threads library allowing portable program-
ming across systems such as Linux and Windows. We have of course had such libraries for
many years, but not standard ones.

Threads plus some form of locking to avoid data races is just about the worst way to
directly exploit concurrency, but C++ needs that to support existing applications and to
maintain its role as a systems programming language on traditional operating systems.
Prototypes of this library exist—based on many years of active use.

Download at Boykma.Com C++

11

12

CHAPTER ONE

One key issue for concurrency is how you “package up” a task to be executed concur-
rently with other tasks. In C++, I suspect the answer will be “as a function object.” The
object can contain whatever data is needed and be passed around as needed. C++98 han-
dles that well for named operations (named classes from which we instantiate function
objects), and the technique is ubiquitous for parameterization in generic libraries (e.g., the
STL). C++0x makes it easier to write simple “one-off” function objects by providing
“lambda functions” that can be written in expression contexts (e.g., as function argu-
ments) and generates function objects (“closures”) appropriately.

The next steps are more interesting. Immediately post-C++0x, the committee plans for a
technical report on libraries. This will almost certainly provide for thread pools and some
form of work stealing. That is, there will be a standard mechanism for a user to request
relatively small units of work (“tasks”) to be done concurrently without fiddling with
thread creation, cancellation, locking, etc., probably built with function objects as tasks.
Also, there will be facilities for communicating between geographically remote processes
through sockets, iostreams, and so on, rather like boost: :networking.

In my opinion, much of what is interesting about concurrency will appear as multiple
libraries supporting logically distinct concurrency models.

Many modern systems are componentized and spread out over a network; the age of
web applications and mashups may accentuate that trend. Should a language reflect
those aspects of the network?

Bjarne: There are many forms of concurrency. Some are aimed at improving the through-
put or response time of a program on a single computer or cluster, some are aimed at deal-
ing with geographical distribution, and some are below the level usually considered by
programmers (pipelining, caching, etc.).

C++0x will provide a set of facilities and guarantees that saves programmers from the
lowest-level details by providing a “contract” between machine architects and compiler
writers—a “machine model.” It will also provide a threads library providing a basic map-
ping of code to processors. On this basis, other models can be provided by libraries. I
would have liked to see some simpler-to-use, higher-level concurrency models supported
in the C++0x standard library, but that now appears unlikely. Later—hopefully, soon after
C++0x—we will get more libraries specified in a technical report: thread pools and futures,
and a library for I/0 streams over wide area networks (e.g., TCP/IP). These libraries exist,
but not everyone considers them well enough specified for the standard.

Years ago, I hoped that C++0x would address some of C++'s long-standing problems with
distribution by specitying a standard form of marshalling (or serialization), but that didn’t
happen. So, the C++ community will have to keep addressing the higher levels of distrib-
uted computing and distributed application building through nonstandard libraries and/or
frameworks (e.g., CORBA or .NET).

The very first C++ library (really the very first C with classes) library, provided a light-
weight form of concurrency and over the years, hundreds of libraries and frameworks for

Download at Boykma.Com

concurrent, parallel, and distributed computing have been built in C++, but the commu-
nity has not been able to agree on standards. I suspect that part of the problem is that it
takes a lot of money to do something major in this field, and that the big players preferred
to spend their money on their own proprietary libraries, frameworks, and languages. That
has not been good for the C++ community as a whole.

Future

Will we ever see C++ 2.0?

Bjarne: That depends on what you mean by “C++ 2.0.” If you mean a new language built
more or less from scratch providing all of the best of C++ but none of what’s bad (for some
definitions of “good” and “bad”), the answer is “I don’t know.” I would like to see a major
new language in the C++ tradition, but I don’t see one on the horizon, so let me concen-
trate on the next ISO C++ standard, nicknamed C++0x.

It will be a “C++ 2.0” to many, because it will supply new language features and new stan-
dard libraries, but it will be almost 100% compatible with C++98. We call it C++0x, hoping
that it'll become C++09. If we are slow—so that that x has to become hexadecimal—I (and
others) will be quite sad and embarrassed.

C++0x will be almost 100% compatible with C++98. We have no particular desire to
break your code. The most significant incompatibilities come from the use of a few new
keywords, such as static_assert, constexpr, and concept. We have tried to minimize impact
by choosing new keywords that are not heavily used. The major improvements are:

¢ Support for modern machine architectures and concurrency: a machine model, a
thread library, thread local storage and atomic operations, and an asynchronous value
return mechanism (“futures”).

e Better support for generic programming: concepts (a type system for types, combina-
tions of types, and combinations of types and integers) to give better checking of tem-
plate definitions and uses, and better overloading of templates. Type deduction based
on initializers (auto), generalized initializer lists, generalized constant expressions
(constexpr), lambda expressions, and more.

e Many “minor” language extensions, such as static assertions, move semantics,
improved enumerations, a name for the null pointer (nullptr), etc.

e New standard libraries for regular expression matching, hash tables (e.g., unordered map),
“smart” pointers, etc.

For complete details, see the website of the “C++ Standards Committee.”* For an over-
view, see my online C++0x FAQ.T

* http://www.open-std.org/jtcl/sc22/wg21/
+ http://www.research.att.com/~bs/C++0xFAQ.html

Download at Boykma.Com

13

http://www.open-std.org/jtc1/sc22/wg21/
http://www.research.att.com/~bs/C++0xFAQ.html

1%

CHAPTER ONE

Please note that when I talk about “not breaking code,” I am referring to the core language
and the standard library. Old code will of course be broken if it uses nonstandard exten-
sions from some compiler provider or antique nonstandard libraries. In my experience,
when people complain about “broken code” or “instability” they are referring to propri-
etary features and libraries. For example, if you change operating systems and didn’t use one
of the portable GUI libraries, you probably have some work to do on the user interface code.

What stops you from creating a major new language?

Bjarne: Some key questions soon emerge:

¢ What problem would the new language solve?
¢ Who would it solve problems for?
e What dramatically new could be provided (compared to every existing language)?

e Could the new language be effectively deployed (in a world with many well-supported
languages)?

e Would designing a new language simply be a pleasant distraction from the hard work
of helping people build better real-world tools and systems?

So far, I have not been able to answer those questions to my satisfaction.

That doesn’t mean that I think that C++ is the perfect language of its kind. It is not; I'm
convinced that you could design a language about a tenth of the size of C++ (whichever
way you measure size) providing roughly what C++ does. However, there has to be more
to a new language that just doing what an existing language can, but slightly better and
slightly more elegantly.

What do the lessons about the invention, further development, and adoption of your
language say to people developing computer systems today and in the foreseeable
future?

Bjarne: That’s a big question: can we learn from history? If so, how? What kind of lessons
can we learn? During the early development of C++, I articulated a set of “rules of
thumb,” which you can find in The Design and Evolution of C++ [Addison-Wesley], and also
discussed in my two HOPL papers. Clearly, any serious language design project needs a set
of principles, and as soon as possible, these principles need to be articulated. That’s actu-
ally a conclusion from the C++ experience: I didn’t articulate C++’s design principles early
enough and didn’t get those principles understood widely enough. As a result, many peo-
ple invented their own rationales for C++’s design; some of those were pretty amazing and
led to much confusion. To this day, some see C++ as little more than a failed attempt to
design something like Smalltalk (no, C++ was not supposed to be “like Smalltalk”; it fol-
lows the Simula model of OO), or as nothing but an attempt to remedy some flaws in C
for writing C-style code (no, C++ was not supposed to be just C with a few tweaks).

The purpose of a (nonexperimental) programming language is to help build good sys-
tems. It follows that notions of system design and language design are closely related.

Download at Boykma.Com

My definition of “good” in this context is basically “correct, maintainable, and providing
acceptable resource usage.” The obvious missing component is “easy to write,” but for the
kind of systems I think most about, that’s secondary. “RAD development” is not my ideal.
It can be as important to say what is not a primary aim as to state what is. For example, I
have nothing against rapid development—nobody in their right mind wants to spend
more time than necessary on a project—but I'd rather have lack of restrictions on applica-
tion areas and performance. My aim for C++ was and is direct expression of ideas, result-
ing in code that can be efficient in time and space.

C and C++ have provided stability over decades. That has been immensely important to
their industrial users. I have small programs that have been essentially unchanged since
the early 80s. There is a price to pay for such stability, but languages that don’t provide it
are simply unsuitable for large, long-lived projects. Corporate languages and languages
that try to follow trends closely tend to fail miserably here, causing a lot of misery along
the way.

This leads to thinking about how to manage evolution. How much can be changed? What
is the granularity of change? Changing a language every year or so as new releases of a
product are released is too ad hoc and leads to a series of de facto subsets, discarded librar-
ies and language features, and/or massive upgrade efforts. Also, a year is simply not suffi-
cient gestation period for significant features, so the approach leads to half-baked solutions
and dead ends. On the other hand, the 10-year cycle of ISO standardized languages, such
as C and C++, is too long and leads to parts of the community (including parts of the com-
mittee) fossilizing.

A successful language develops a community: the community shares techniques, tools,
and libraries. Corporate languages have an inherent advantage here: they can buy market
share with marketing, conferences, and “free” libraries. This investment can pay off in
terms of others adding significantly, making the community larger and more vibrant.
Sun’s efforts with Java showed how amateurish and underfinanced every previous effort
to establish a (more or less) general-purpose language had been. The U.S. Department of
Defense’s efforts to establish Ada as a dominant language was a sharp contrast, as were the
unfinanced efforts by me and my friends to establish C++.

I can’t say that I approve of some of the Java tactics, such as selling top-down to nonpro-
gramming executives, but it shows what can be done. Noncorporate successes include the
Python and Perl communities. The successes at community building around C++ have
been too few and too limited, given the size of the community. The ACCU conferences are
great, but why haven’t there been a continuous series of huge international C++ confer-
ences since 1986 or so? The Boost libraries are great, but why hasn’t there been a central
repository for C++ libraries since 1986 or so? There are thousands of open source C++
libraries in use. I don’t even know of a comprehensive list of commercial C++ libraries. I
won't start answering those questions, but will just point out that any new language must
somehow manage the centrifugal forces in a large community, or suffer pretty severe
consequences.

Download at Boykma.Com

C++

15

A general-purpose language needs the input from and approval of several communities,
such as, industrial programmers, educators, academic researchers, industrial researchers,
and the open source community. These communities are not disjoint, but individual sub-
communities often see themselves as self-sufficient, in possession of knowledge of what is
right and in conflict with other communities that for some reason “don’t get it.” This can
be a significant practical problem. For example, parts of the open source community have
opposed the use of C++ because “it’s a Microsoft language” (it isn’t) or “AT&T owns it” (it
doesn’t), whereas some major industrial players have considered it a problem with C++
that they don’t own it.

This really crucial problem here is that many subcommunities push a limited and paro-
chial view of “what programming really is” and “what is really needed”: “if everybody just
did things the right way, there’d be no problem.” The real problem is to balance the vari-
ous needs to create a larger and more varied community. As people grow and face new
challenges, the generality and flexibility of a language start to matter more than providing
optimal solutions to a limited range of problems.

To get to technical points, I still think that a flexible, extensible, and general static type
system is great. My reading of the C++ experience reinforces that view. I am also very
keen on genuine local variables of user-defined types: the C++ techniques for handling
general resources based on scoped variables have been very effective compared to just
about anything. Constructors and destructors, often used together with RAII, can yield
very elegant and efficient code.

Teaching

You left industry to become an academic. Why?

Bjarne: Actually, I haven’t completely left industry, because I maintain a link to AT&T
Labs as an AT&T fellow, and spend much time each year with industry people. I consider
my connection with industry essential because that’s what keeps my work anchored in
reality.

I went to Texas A&M University as a professor five years ago because (after almost 25
years in “The Labs”) I felt a need for a change and because I thought I had something to
contribute in the area of education. I also entertained some rather idealistic ideas about
doing more fundamental research after my years of very practical research and design.

Much computer science research is either too remote from everyday problems (even from
conjectured future everyday problems), or so submerged in such everyday problems that
it becomes little more than technology transfer. Obviously, I have nothing against tech-
nology transfer (we badly need it), but there ought to be strong feedback loops from
industrial practice to advanced research. The short planning horizon of many in industry
and the demands of the academic publication/tenure race conspire to divert attention and
effort from some of the most critical problems.

16 CHAPTER ONE Download at Boykma.Com

During these years in academia, what did you learn about teaching programming to
beginners?

Bjarne: The most concrete result of my years in academia (in addition to the obligatory
academic papers) is a new textbook for teaching programming to people who have never
programmed before, Programming: Principles and Practice Using C++ [Addison-Wesley].

This is my first book for beginners. Before I went to academia, I simply didn’t know
enough beginners to write such a book. I did, however, feel that too many software devel-
opers were very poorly prepared for their tasks in industry and elsewhere. Now I have
taught (and helped to teach) programming to more than 1,200 beginners and I feel a bit
more certain that my ideas in this area can scale.

A beginner’s book must serve several purposes. Most fundamentally, it must provide a
good foundation for further learning (if successful, it will be the start of a lifelong effort)
and also provide some practical skills. Also, programming—and in general software devel-
opment—is not a purely theoretical skill, nor is it something you can do well without
learning some fundamental concepts. Unfortunately, far too often, teaching fails to main-
tain a balance between theory/principles and practicalities/techniques. Consequently, we
see people who basically despise programming (“mere coding”) and think that software
can be developed from first principles without any practical skills. Conversely, we see peo-
ple who are convinced that “good code” is everything and can be achieved with little more
than a quick look at an online manual and a lot of cutting and pasting; I have met pro-
grammers who considered K&R “too complicated and theoretical.” My opinion is that
both attitudes are far too extreme and lead to poorly structured, inefficient, and unmain-
tainable messes even when they do manage to produce minimally functioning code.

What is your opinion on code examples in textbooks? Should they include error/
exception checking? Should they be complete programs so that they can actually be
compiled and run?

Bjarne: I strongly prefer examples that in as few lines as possible illustrate an idea. Such
program fragments are often incomplete, though I insist that mine will compile and run if
embedded in suitable scaffolding code. Basically, my code presentation style is derived
from K&R. For my new book, all code examples will be available in a compilable form. In
the text, I vary between small fragments embedded in explanatory text and longer, more
complete, sections of code. In key places, I use both techniques for a single example to
allow the reader two looks at critical statements.

Some examples should be complete with error checking and all should reflect designs that
can be checked. In addition to the discussion of errors and error handling scattered
throughout the book, there are separate chapters on error handling and testing. I strongly
prefer examples derived from real-world programs. I really dislike artificial cute examples,
such as inheritance trees of animals and obtuse mathematical puzzles. Maybe I should add
a label to my book: “no cute cuddly animals were abused in this book’s examples.”

Download at Boykma.Com

C++

17

Download at Boykma.Com

CHAPTER TWO

Python

Pythonis amodern, general-purpose, high-level language developed by Guido van
Rossum as a result of his work with the ABC programming language. Python’s phi-
losophy is pragmatic; its users often speak of the Zen of Python, strongly preferring
a single obvious way to accomplish any task. Ports exist for VMs such as Microsoft’s
CLR and the JVM, but the primary implementation is CPython, still developed by van
Rossum and other volunteers, who just released Python 3.0, a backward-incompatible
rethinking of parts of the language and its core libraries.

Download at Boykma.Com

19

20

CHAPTER TWO

The Pythonic Way

What differences are there between developing a programming language and developing
a “common’” software project?

Guido van Rossum: More than with most software projects, your most important users
are programmers themselves. This gives a language project a high level of “meta” content.
In the dependency tree of software projects, programming languages are pretty much at
the bottom—everything else depends on one or more languages. This also makes it hard
to change a language—an incompatible change affects so many dependents that it’s usu-
ally just not feasible. In other words, all mistakes, once released, are cast in stone. The ulti-
mate example of this is probably C++, which is burdened with compatibility requirements
that effectively require code written maybe 20 years ago to be still valid.

How do you debusg a language?

Guido: You don’t. Language design is one area where agile development methodologies
just don’t make sense—until the language is stable, few people want to use it, and you
won't find the bugs in the language definition until you have so many users that it’s too
late to change things.

Of course there’s plenty in the implementation that can be debugged like any old program,
but the language design itself pretty much requires careful design up front, because the
cost of bugs is so exorbitant.

How do you decide when a feature should go in a library as an extension or when it
needs to have support from the core language?

Guido: Historically, I've had a pretty good answer for that. One thing I noticed very early
on was that everybody wants their favorite feature added to the language, and most peo-
ple are relatively inexperienced about language design. Everybody is always proposing
“let’s add this to the language,” “let’s have a statement that does X.” In many cases, the
answer is, “Well, you can already do X or something almost like X by writing these two or
three lines of code, and it’s not all that difficult.” You can use a dictionary, or you can
combine a list and a tuple and a regular expression, or write a little metaclass—all of those
things. I may even have had the original version of this answer from Linus, who seems to
have a similar philosophy.

Telling people you can already do that and here is how is a first line of defense. The second
thing is, “Well, that’s a useful thing and we can probably write or you can probably write
your own module or class, and encapsulate that particular bit of abstraction.” Then the
next line of defense is, “OXK, this looks so interesting and useful that we'll actually accept it
as a new addition to the standard library, and it’s going to be pure Python.” And then,
finally, there are things that just aren’t easy to do in pure Python and we’ll suggest or rec-
ommend how to turn them into a C extension. The C extensions are the last line of
defense before we have to admit, “Well, yeah, this is so useful and you really cannot do
this, so we’ll have to change the language.”

Download at Boykma.Com

There are other criteria that determine whether it makes more sense to add something to
the language or it makes more sense to add something to the library, because if it has to do
with the semantics of namespaces or that kind of stuff, there’s really nothing you can do
besides changing the language. On the other hand, the extension mechanism was made
powerful enough that there is an amazing amount of stuff you can do from C code that
extends the library and possibly even adds new built-in functionality without actually
changing the language. The parser doesn’t change. The parse tree doesn’'t change. The
documentation for the language doesn’t change. All your tools still work, and yet you
have added new functionality to your system.

I suppose there are probably features that you’ve looked at that you couldn’t implement
in Python other than by changing the language, but you probably rejected them. What
criteria do you use to say this is something that’s Pythonic, this is something that’s not
Pythonic?

Guido: That’s much harder. That is probably, in many cases, more a matter of a gut feel-
ing than anything else. People use the word Pythonic and “that is Pythonic” a lot, but
nobody can give you a watertight definition of what it means for something to be Pythonic
or un-Pythonic.

You have the “Zen of Python,” but beyond that?

Guido: That requires a lot of interpretation, like every good holy book. When I see a good
or a bad proposal, I can tell if it is a good or bad proposal, but it’s really hard to write a set
of rules that will help someone else to distinguish good language change proposals from
bad change proposals.

Sounds almost like it'’s a matter of taste as much as anything.

Guido: Well, the first thing is always try to say “no,” and see if they go away or find a way
to get their itch scratched without changing the language. It’s remarkable how often that
works. That’s more of a operational definition of “it’s not necessary to change the language.”

If you keep the language constant, people will still find a way to do what they need to do.
Beyond that it’s often a matter of use cases coming from different areas where there is
nothing application-specific. If something was really cool for the Web, that would not
make it a good feature to add to the language. If something was really good for writing
shorter functions or writing classes that are more maintainable, that might be a good thing
to add to the language. It really needs to transcend application domains in general, and
make things simpler or more elegant.

When you change the language, you affect everyone. There’s no feature that you can hide
so well that most people don’t need to know about. Sooner or later, people will encounter
code written by someone else that uses it, or they’ll encounter some obscure corner case
where they have to learn about it because things don’t work the way they expected.

Download at Boykma.Com PYTHON

21

22

CHAPTER TWO

Often elegance is also in the eye of the beholder. We had a recent discussion on one of the
Python lists where people were arguing forcefully that using dollar instead of self-dot was
much more elegant. I think their definition of elegance was number of keystrokes.

There’s an argument to make for parsimony there, but very much in the context of
personal taste.

Guido: Elegance and simplicity and generality all are things that, to a large extent, depend
on personal taste, because what seems to cover a larger area for me may not cover enough
for someone else, and vice versa.

How did the Python Enhancement Proposal (PEP) process come about?

Guido: That’s a very interesting historical tidbit. I think it was mostly started and champi-
oned by Barry Warsaw, one of the core developers. He and I started working together in
‘95, and I think around 2000, he came up with the suggestion that we needed more of a
formal process around language changes.

I tend to be slow in these things. I mean I wasn’t the person who discovered that we really
needed a mailing list. I wasn’t the person who discovered that the mailing list got
unwieldy and we needed a newsgroup. I wasn’t the person to propose that we needed a
website. I was also not the person to propose that we needed a process for discussing
and inventing language changes, and making sure to avoid the occasional mistake
where things had been proposed and quickly accepted without thinking through all of
the consequences.

At the time between 1995 and 2000, Barry, myself, and a few other core developers, Fred
Drake, Ken Manheimer for a while, were all at CNRI, and one of the things that CNRI did
was organize the IETF meetings. CNRI had this little branch that eventually split off that
was a conference organizing bureau, and their only customer was the IETF. They later also
did the Python conferences for a while, actually. Because of that it was a pretty easy boon-
doggle to attend IETF meetings even if they weren’t local. I certainly got a taste of the IETF
process with its RFCs and its meeting groups and stages, and Barry also got a taste of that.
When he proposed to do something similar for Python, that was an easy argument to
make. We consciously decided that we wouldn’t make it quite as heavy-handed as the
IETF RFCs had become by then, because Internet standards, at least some of them, affect
way more industries and people and software than a Python change, but we definitely
modeled it after that. Barry is a genius at coming up with good names, so I am pretty sure
that PEP was his idea.

We were one of the first open source projects at the time to have something like this, and
it’s been relatively widely copied. The Tcl/Tk community basically changed the title and
used exactly the same defining document and process, and other projects have done simi-
lar things.

Download at Boykma.Com

Do you find that adding a little bit of formalism really helps crystallize the design
decisions around Python enhancements?

Guido: I think it became necessary as the community grew and I wasn’t necessarily able
to judge every proposal on its value by itself. It has really been helpful for me to let other
people argue over various details, and then come with relatively clear-cut conclusions.

Do they lead to a consensus where someone can ask you to weigh in on a single particular
crystallized set of expectations and proposals?

Guido: Yes. It often works in a way where I initially give a PEP a thumb’s up in the sense
that I say, “It looks like we have a problem here. Let’s see if someone figures out what the
right solution is.” Often they come out with a bunch of clear conclusions on how the
problem should be solved and also a bunch of open issues. Sometimes my gut feelings can
help close the open issues. I'm very active in the PEP process when it’s an area that I'm
excited about—if we had to add a new loop control statement, I wouldn’t want that to be
designed by other people. Sometimes I stay relatively far away from it like database APIs.

What creates the need for a new major version?

Guido: It depends on your definition of major. In Python, we generally consider releases
like 2.4, 2.5, and 2.6 “major” events, which only happen every 18-24 months. These are
the only occasions where we can introduce new features. Long ago, releases were done at
the whim of the developers (me, in particular). Early this decade, however, the users
requested some predictability—they objected against features being added or changed in
“minor” revisions (e.g., 1.5.2 added major features compared to 1.5.1), and they wished
the major releases to be supported for a certain minimum amount of time (18 months). So
now we have more or less time-based major releases: we plan the series of dates leading
up to a major release (e.g., when alpha and beta versions and release candidates are
issued) long in advance, based on things like release manager availability, and we urge the
developers to get their changes in well in advance of the final release date.

Features selected for addition to releases are generally agreed upon by the core developers,
after (sometimes long) discussions on the merits of the feature and its precise specification.
This is the PEP process: Python Enhancement Proposal, a document-base process not
unlike the IETF’s RFC process or the Java world’s JSR process, except that we aren’t quite
as formal, as we have a much smaller community of developers. In case of prolonged dis-
agreement (either on the merits of a feature or on specific details), I may end up breaking
a tie; my tie-breaking algorithm is mostly intuitive, since by the time it is invoked, rational
argument has long gone out of the window.

The most contentious discussions are typically about user-visible language features; library
additions are usually easy (as they don’t harm users who don’t care), and internal
improvements are not really considered features, although they are constrained by pretty
stringent backward compatibility at the C API level.

Download at Boykma.Com

PYTHON

23

Since the developers are typically the most vocal users, I can’t really tell whether features
are proposed by users or by developers—in general, developers propose features based on
needs they perceived among the users they know. If a user proposes a new feature, it is
rarely a success, since without a thorough understanding of the implementation (and of
language design and implementation in general) it is nearly impossible to properly pro-
pose a new feature. We like to ask users to explain their problems without having a spe-
cific solution in mind, and then the developers will propose solutions and discuss the
merits of different alternatives with the users.

There’s also the concept of a radically major or breakthrough version, like 3.0. Historically,
1.0 was evolutionarily close to 0.9, and 2.0 was also a relatively small step from 1.6. From
now on, with the much larger user base, such versions are rare indeed, and provide the
only occasion for being truly incompatible with previous versions. Major versions are
made backward compatible with previous major versions with a specific mechanism avail-
able for deprecating features slated for removal.

How did you choose to handle numbers as arbitrary precision integers (with all the cool
advantages you get) instead of the old (and super common) approach to pass it to the
hardware?

Guido: I originally inherited this idea from Python’s predecessor, ABC. ABC used arbi-
trary precision rationals, but I didn’t like the rationals that much, so I switched to integers;
for reals, Python uses the standard floating-point representation supported by the hard-
ware (and so did ABC, with some prodding).

Originally Python had two types of integers: the customary 32-bit variety (“int”) and a
separate arbitrary precision variety (“long”). Many languages do this, but the arbitrary
precision variety is relegated to a library, like Bignum in Java and Perl, or GNU MP for C.
In Python, the two have (nearly) always lived side-by-side in the core language, and users
had to choose which one to use by appending an “L” to a number to select the long vari-
ety. Gradually this was considered an annoyance; in Python 2.2, we introduced automatic
conversion to long when the mathematically correct result of an operation on ints could
not be represented as an int (for example, 2**100).

Previously, this would raise an OverflowError exception. There was once a time where the
result would silently be truncated, but I changed it to raising an exception before ever let-
ting others use the language. In early 1990, I wasted an afternoon debugging a short demo
program I'd written implementing an algorithm that made non-obvious use of very large
integers. Such debugging sessions are seminal experiences.

However, there were still certain cases where the two number types behaved slightly dif-
ferent; for example, printing an int in hexadecimal or octal format would produce an
unsigned outcome (e.g., —1 would be printed as FFFFFFFF), while doing the same on the
mathematically equal long would produce a signed outcome (-1, in this case). In Python
3.0, we're taking the radical step of supporting only a single integer type; we're calling it
int, but the implementation is largely that of the old long type.

2% CHAPTER TWO Download at Boykma.Com

Why do you call it a radical step?

Guido: Mostly because it’s a big deviation from current practice in Python. There was a
lot of discussion about this, and people proposed various alternatives where two (or more)
representations would be used internally, but completely or mostly hidden from end users
(but not from C extension writers). That might perform a bit better, but in the end it was
already a massive amount of work, and having two representations internally would just
increase the effort of getting it right, and make interfacing to it from C code even hairier.
We are now hoping that the performance hit is minor and that we can improve perfor-
mance with other techniques like caching.

How did you adopt the “there should be one—and preferably only one—obvious way
to do it” philosophy?

Guido: This was probably subconscious at first. When Tim Peters wrote the “Zen of
Python” (from which you quote), he made explicit a lot of rules that I had been applying
without being aware of them. That said, this particular rule (while often violated, with my
consent) comes straight from the general desire for elegance in mathematics and com-
puter science. ABC’s authors also applied it, in their desire for a small number of orthogo-
nal types or concepts. The idea of orthogonality is lifted straight from mathematics, where
it refers to the very definition of having one way (or one true way) to express something.
For example, the XYZ coordinates of any point in 3D space are uniquely determined, once
you’ve picked an origin and three basis vectors.

I also like to think that I'm doing most users a favor by not requiring them to choose
between similar alternatives. You can contrast this with Java, where if you need a listlike
data structure, the standard library offers many versions (a linked list, or an array list, and
others), or C, where you have to decide how to implement your own list data type.

What is your take on static versus dynamic typing?

Guido: I wish I could say something simple like “static typing bad, dynamic typing good,”
but it isn’t always that simple. There are different approaches to dynamic typing, from Lisp
to Python, and different approaches to static typing, from C++ to Haskell. Languages like
C++ and Java probably give static typing a bad name because they require you to tell the
compiler the same thing several times over. Languages like Haskell and ML, however, use
type inferencing, which is quite different, and has some of the same benefits as dynamic
typing, such as more concise expression of ideas in code. However the functional para-
digm seems to be hard to use on its own—things like I/O or GUI interaction don’t fit well
into that mold, and typically are solved with the help of a bridge to a more traditional lan-
guage, like C, for example.

In some situations the verbosity of Java is considered a plus; it has enabled the creation of
powerful code-browsing tools that can answer questions like “where is this variable
changed?” or “who calls this method?” Dynamic languages make answering such ques-
tions harder, because it’s often hard to find out the type of a method argument without
analyzing every path through the entire codebase. I'm not sure how functional languages

Download at Boykma.Com PYTHON

25

like Haskell support such tools; it could well be that you’d have to use essentially the same
technique as for dynamic languages, since that’s what type inferencing does anyway—in
my limited understanding!

Are we moving toward hybrid typing?

Guido: I expect there’s a lot to say for some kind of hybrid. I've noticed that most large
systems written in a statically typed language actually contain a significant subset that is
essentially dynamically typed. For example, GUI widget sets and database APIs for Java
often feel like they are fighting the static typing every step of the way, moving most cor-
rectness checks to runtime.

A hybrid language with functional and dynamic aspects might be quite interesting. I
should add that despite Python’s support for some functional tools like map() and lambda,
Python does not have a functional-language subset: there is no type inferencing, and no
opportunity for parallellization.

Why did you choose to support multiple paradigms?

Guido: I didn't really; Python supports procedural programming, to some extent, and OO.
These two aren’t so different, and Python’s procedural style is still strongly influenced by
objects (since the fundamental data types are all objects). Python supports a tiny bit of
functional programming—but it doesn’t resemble any real functional language, and it
never will. Functional languages are all about doing as much as possible at compile time—
the “functional” aspect means that the compiler can optimize things under a very strong
guarantee that there are no side effects, unless explicitly declared. Python is about having
the simplest, dumbest compiler imaginable, and the official runtime semantics actively dis-
courage cleverness in the compiler like parallelizing loops or turning recursion into loops.

Python probably has the reputation of supporting functional programming based on the
inclusion of lambda, map, filter, and reduce in the language, but in my eyes these are just
syntactic sugar, and not the fundamental building blocks that they are in functional lan-
guages. The more fundamental property that Python shares with Lisp (not a functional
language either!) is that functions are first-class objects, and can be passed around like any
other object. This, combined with nested scopes and a generally Lisp-like approach to
function state, makes it possible to easily implement concepts that superficially resemble
concepts from functional languages, like currying, map, and reduce. The primitive opera-
tions that are necessary to implement those concepts are built in Python, where in func-
tional languages, those concepts are the primitive operations. You can write reduce() in a
few lines of Python. Not so in a functional language.

When you created the language, did you consider the type of programmers it might have
attracted?

Guido: Yes, but I probably didn’t have enough imagination. I was thinking of professional
programmers in a Unix or Unix-like environment. Early versions of the Python tutorial
used a slogan something like “Python bridges the gap between C and shell programming,”

26 CHAPTER TWO Download at Boykma.Com

because that was where I was myself, and the people immediately around me. It never
occurred to me that Python would be a good language to embed in applications until peo-
ple started asking about that.

The fact that it was useful for teaching first principles of programming in a middle school
or college setting or for self-teaching was merely a lucky coincidence, enabled by the
many ABC features that I kept—ABC was aimed specifically at teaching programming to
nonprogrammers.

How do you balance the different needs of a language that should be easy to learn for
novices versus a language that should be powerful enough for experienced programmers
to do useful things? Is that a false dichotomy?

Guido: Balance is the word. There are some well-known traps to avoid, like stuff that is
thought to help novices but annoys experts, and stuft that experts need but confuses novices.
There’s plenty enough space in between to keep both sides happy. Another strategy is to have
ways for experts to do advanced things that novices will never encounter—for example, the
language supports metaclasses, but there’s no reason for novices to know about them.

The Good Programmer

How do you recognize a good programmer?

Guido: It takes time to recognize a good programmer. For example, it’s really hard to tell
good from bad in a one-hour interview. When you work together with someone though,
on a variety of problems, it usually becomes pretty clear which are the good ones. I hesi-
tate to give specific criteria—I guess in general the good ones show creativity, learn
quickly, and soon start producing code that works and doesn’t need a lot of changes before
it’s ready to be checked in. Note that some folks are good at different aspects of program-
ming than others—some folks are good at algorithms and data structures, others are good
at large-scale integration, or protocol design, or testing, or API design, or user interfaces,
or whatever other aspects of programming exist.

What method would you use to hire programmers?

Guido: Based on my interviewing experience in the past, I don’t think I'd be any good at
hiring in the traditional way—my interview skills are nearly nonexistent on both sides of
the table! I guess what I’d do would be to use some kind of apprentice system where I'd be
working closely with people for quite some time and would eventually get a feeling for
their strengths and weaknesses. Sort of the way an open source project works.

Is there any characteristic that becomes fundamental to evaluate if we are looking for
great Python programmers?

Guido: I'm afraid you are asking this from the perspective of the typical manager who
simply wants to hire a bunch of Python programmers. I really don’t think there’s a simple
answer, and in fact I think it’s probably the wrong question. You don’t want to hire
Python programmers. You want to hire smart, creative, self-motivated people.

Download at Boykma.Com PYTHON

27

If you check job ads for programmers, nearly all of them include a line about being able
to work in a team. What is your opinion on the role of the team in programming? Do you
still see space for the brilliant programmer who can’t work with others?

Guido: I am with the job ads in that one aspect. Brilliant programmers who can’t do
teamwork shouldn’t get themselves in the position of being hired into a traditional pro-
gramming position—it will be a disaster for all involved, and their code will be a night-
mare for whoever inherits it. I actually think it’s a distinct lack of brilliance if you can’t do
teamwork. Nowadays there are ways to learn how to work with other people, and if
you're really so brilliant you should be able to learn teamwork skills easily—it’s really not
as hard as learning how to implement an efficient Fast Fourier Transform, if you set your
mind about it.

Being the designer of Python, what advantages do you see when coding with your
language compared to another skilled developer using Python?

Guido: I don’t know—at this point the language and VM have been touched by so many
people that I'm sometimes surprised at how certain things work in detail myself! If I have
an advantage over other developers, it probably has more to do with having used the lan-
guage longer than anyone than with having written it myself. Over that long period of
time, I have had the opportunity to ponder which operations are faster and which are
slower—for example, I may be aware more than most users that locals are faster than glo-
bals (though others have gone overboard using this, not me!), or that functions and
method calls are expensive (more so than in C or Java), or that the fastest data type is a
tuple.

When it comes to using the standard library and beyond, I often feel that others have an
advantage. For example, I write about one web application every few years, and the tech-
nology available changes each time, so I end up writing a “first” web app using a new
framework or approach each time. And I still haven’t had the opportunity to do serious
XML mangling in Python.

It seems that one of the features of Python is its conciseness. How does this affect the
maintainability of the code?

Guido: I've heard of research as well as anecdotal evidence indicating that the error rate
per number of lines of code is pretty consistent, regardless of the programming language
used. So a language like Python where a typical application is just much smaller than, say,
the same amount of functionality written in C++ or Java, would make that application
much more maintainable. Of course, this is likely going to mean that a single programmer is
responsible for more functionality. That’s a separate issue, but it still comes out in favor of
Python: more productivity per programmer probably means fewer programmers on a team,
which means less communication overhead, which according to The Mythical Man-Month
[Frederick P. Brooks; Addison-Wesley Professional] goes up by the square of the team size, if
I remember correctly.

28 CHAPTER TWO Download at Boykma.Com

What link do you see between the easiness of prototyping offered by Python and the
effort needed to build a complete application?

Guido: I never meant Python to be a prototyping language. I don’t believe there should
be a clear distinction between prototyping and “production” languages. There are situa-
tions where the best way to write a prototype would be to write a little throwaway C hack.
There are other situations where a prototype can be created using no “programming” at
all—for example, using a spreadsheet or a set of find and grep commands.

The earliest intentions I had for Python were simply for it to be a language to be used in
cases where C was overkill and shell scripts became too cumbersome. That covers a lot of
prototyping, but it also covers a lot of “business logic” (as it’s come to be called these days)
that isn’t particularly greedy in computing resources but requires a lot of code to be writ-
ten. I would say that most Python code is not written as a prototype but simply to get a job
done. In most cases Python is fully up to the job, and there is no need to change much in
order to arrive at the final application.

A common process is that a simple application gradually acquires more functionality, and
ends up growing tenfold in complexity, and there is never a precise cutover point from
prototype to final application. For example, the code review application Mondrian that I
started at Google has probably grown tenfold in code size since I first released it, and it is
still all written in Python. Of course, there are also examples where Python did eventually
get replaced by a faster language—for example, the earliest Google crawler/indexer was
(largely) written in Python—but those are the exceptions, not the rule.

How does the immediacy of Python affect the design process?

Guido: This is often how I work, and, at least for me, in general it works out well! Sure, I
write a lot of code that I throw away, but it’s much less code than I would have written in
any other language, and writing code (without even running it) often helps me tremen-
dously in understanding the details of the problem. Thinking about how to rearrange the
code so that it solves the problem in an optimal fashion often helps me think about the
problem. Of course, this is not to be used as an excuse to avoid using a whiteboard to
sketch out a design or architecture or interaction, or other early design techniques. The
trick is to use the right tool for the job. Sometimes that’s a pencil and a napkin—other
times it’s an Emacs window and a shell prompt.

Do you think that bottom-up program development is more suited to Python?

Guido: I don’t see bottom-up versus top-down as religious opposites like vi versus Emacs.
In any software development process, there are times when you work bottom-up, and
other times when you work top-down. Top-down probably means you're dealing with
something that needs to be carefully reviewed and designed before you can start coding,
while bottom-up probably means that you are building new abstractions on top of existing
ones, for example, creating new APIs. I'm not implying that you should start coding APIs
without having some kind of design in mind, but often new APIs follow logically from the
available lower-level APIs, and the design work happens while you are actually writing code.

Download at Boykma.Com PYTHON

29

30

CHAPTER TWO

When do you think Python programmers appreciate more its dynamic nature?

Guido: The language’s dynamic features are often most useful when you are exploring a
large problem or solution space and you don’t know your way around yet—you can do a
bunch of experiments, each using what you learned from the previous ones, without hav-
ing too much code that locks you into a particular approach. Here it really helps that you
can write very compact code in Python—writing 100 lines of Python to run an experiment
once and then starting over is much more efficient than writing a 1,000-line framework
for experimentation in Java and then finding out it solves the wrong problem!

From a security point of view, what does Python offer to the programmer?

Guido: That depends on the attacks you're worried about. Python has automatic memory
allocation, so Python programs aren’t prone to certain types of bugs that are common in C
and C++ code like buffer overflows or using deallocated memory, which have been the
bread and butter of many attacks on Microsoft software. Of course the Python runtime
itself is written in C, and indeed vulnerabilities have been found here over the years, and
there are intentional escapes from the confines of the Python runtime, like the ctypes
module that lets one call arbitrary C code.

Does its dynamic nature help or rather the opposite?

Guido: I don’t think the dynamic nature helps or hurts. One could easily design a
dynamic language that has lots of vulnerabilities, or a static language that has none. How-
ever having a runtime, or virtual machine as is now the “hip” term, helps by constraining
access to the raw underlying machine. This is coincidentally one of the reasons that
Python is the first language supported by Google App Engine, the project in which I am
currently participating.

How can a Python programmer check and improve his code security?

Guido: I think Python programmers shouldn’t worry much about security, certainly not
without having a specific attack model in mind. The most important thing to look for is
the same as in all languages: be suspicious of data provided by someone you don’t trust
(for a web server, this is every byte of the incoming web request, even the headers). One
specific thing to watch out for is regular expressions—it is easy to write a regular expression
that runs in exponential time, so web applications that implement searches where the end
user types in a regular expression should have some mechanism to limit the running time.

Is there any fundamental concept (¢eneral rule, point of view, mindset, principle) that
you would suggest to be proficient in developing with Python?

Guido: I would say pragmatism. If you get too hung up about theoretical concepts like data
hiding, access control, abstractions, or specifications, you aren’t a real Python programmer,
and you end up wasting time fighting the language, instead of using (and enjoying) it;
you're also likely to use it inefficiently. Python is good if you're an instant gratification
junkie like myself. It works well if you enjoy approaches like extreme programming or

Download at Boykma.Com

other agile development methods, although even there I would recommend taking every-
thing in moderation.

What do you mean by “fighting the language”?

Guido: That usually means that they’re trying to continue their habits that worked well
with a different language.

A lot of the proposals to somehow get rid of explicit self come from people who have
recently switched to Python and still haven’t gotten used to it. It becomes an obsession for
them. Sometimes they come out with a proposal to change the language; other times they
come up with some super-complicated metaclass that somehow makes self implicit. Usu-
ally things like that are super-inefficient or don’t actually work in a multithreaded envi-
ronment or whatever other edge case, or they’re so obsessed about having to type those
four characters that they changed the convention from self to s or capital S. People will
turn everything into a class, and turn every access into an accessor method, where that is
really not a wise thing to do in Python; you’ll just have more verbose code that is harder
to debug and runs a lot slower. You know the expression “You can write FORTRAN in any
language?” You can write Java in any language, too.

You spent so much time trying to create (preferably) one obvious way to do things. It
seems like you're of the opinion that doing things that way, the Python way, really lets you
take advantage of Python.

Guido: I'm not sure that I really spend a lot of time making sure that there’s only one
way. The “Zen of Python” is much younger than the language Python, and most defining
characteristics of the language were there long before Tim Peters wrote it down as a form
of poetry. I don’t think he expected it to be quite as widespread and successful when he
wrote it up.

It’s a catchy phrase.

Guido: Tim has a way with words. “There’s only one way to do it” is actually in most
cases a white lie. There are many ways to do data structures. You can use tuples and lists.
In many cases, it really doesn’t matter that much whether you use a tuple or a list or
sometimes a dictionary. It turns out usually if you look really carefully, one solution is
objectively better because it works just as well in a number of situations, and there’s one
or two cases where lists just works so much better than tuples when you keep growing
them.

That comes more actually from the original ABC philosophy that was trying to be very
sparse in the components. ABC actually shared a philosophy with ALGOL-68, which is
now one of the deadest languages around, but was very influentia. Certainly where I was
at the time during the 80s, it was very influential because Adriaan van Wijngaarden was
the big guy from ALGOL 68. He was still teaching classes when I went to college. I did one
or two semesters where he was just telling anecdotes from the history of ALGOL 68 if he
felt like it. He had been the director of CWI. Someone else was it by the time I joined.

Download at Boykma.Com PYTHON

31

32

CHAPTER TWO

There were many people who had been very close with ALGOL 68. I think Lambert
Meertens, the primary author of ABC, was also one of the primary editors of the ALGOL
68 report, which probably means he did a lot of the typesetting, but he may occasionally
also have done quite a lot of the thinking and checking. He was clearly influenced by
ALGOL 68’s philosophy of providing constructs that can be combined in many different
ways to produce all sorts of different data structures or ways of structuring a program.

It was definitely his influence that said, “We have lists or arrays, and they can contain any
kind of other thing. They can contain numbers or strings, but they can also contain other
arrays and tuples of other things. You can combine all of these things together.” Suddenly
you don’t need a separate concept of a multidimensional array because an array of arrays
solves that for any dimensionality. That philosophy of taking a few key things that cover

different directions of flexibility and allow them to be combined was very much a part of

ABC. I borrowed all of that almost without thinking about it very hard.

While Python tries to give the appearance that you can combine things in very flexible
ways as long as you don't try to nest statements inside expressions, there is actually a
remarkable number of special cases in the syntax where in some cases a comma means a
separation between parameters, and in other cases the comma means the items of a list,
and in yet another case it means an implicit tuple.

There are a whole bunch of variations in the syntax where certain operators are not
allowed because they would conflict with some surrounding syntax. That is never really a
problem because you can always put an extra pair of parentheses around something when
it doesn’t work. Because of that the syntax, at least from the parser author’s perspective,
has grown quite a bit. Things like list comprehensions and generator expressions are syn-
tactically still not completely unified. In Python 3000, I believe they are. There’s still some
subtle semantic differences, but the syntax at least is the same.

Multiple Pythons
Does the parser get simpler in Python 3000?

Guido: Hardly. It didn’t become more complex, but it also didn’t really become simpler.

No more complex I think is a win.

Guido: Yeah.

Why the simplest, dumbest compiler imaginable?

Guido: That was originally a very practical goal, because I didn’t have a degree in code
generation. There was just me, and I had to have the byte code generator behind me
before I could do any other interesting work on the language.

Download at Boykma.Com

I still believe that having a very simple parser is a good thing; after all, it is just the thing
that turns the text into a tree that represents the structure of the program. If the syntax is
so ambiguous that it takes really advanced parts of technology to figure it out, then
human readers are probably confused half the time as well. It also makes it really hard to
write another parser.

Python is incredibly simple to parse, at least at the syntactic level. At the lexical level, the
analysis is relatively subtle because you have to read the indentation with a little stack that
is embedded in the lexical analyzer, which is a counterexample for the theory of separa-
tion between lexical and grammatical analysis. Nevertheless, that is the right solution. The
funny thing is that I love automatically generated parsers, but I do not believe very
strongly in automatically generated lexical analysis. Python has always had a manually
generated scanner and an automated parser.

People have written many different parsers for Python. Even port of Python to a different
virtual machine, whether Jython or IronPython or PyPy, has its own parser, and it’s no big
deal because the parser is never a very complex piece of the project, because the structure
of the language is such that you can very easily parse it with the most basic one-token
lookahead recursive descent parser.

What makes parsers slow is actually ambiguities that can only be resolved by looking
ahead until the end of the program. In natural languages there are many examples where
it’s impossible to parse a sentence until you've read the last word and the arbitrary nesting
in the sentence. Or there are sentences that can only be parsed if you actually know the
person that they are talking about, but that’s a completely different situation. For parsing
programming languages, I like my one-token lookahead.

That suggests to me that there may never be macros in Python because you have to
perform another parsing phase then!

Guido: There are ways of embedding the macros in the parser that could probably work.
I'm not at all convinced that macros solve any problem that is particularly pressing for
Python, though. On the other hand, since the language is easy to parse, if you come up
with some kind of hygienic set of macros that fit within the language syntax, it might be
very simple to implement micro-evaluation as parse tree manipulations. That’s just not an
area that I'm particularly interested in.

Why did you choose to use strict formatting in source code?

Guido: The choice of indentation for grouping was not a novel concept in Python; I inher-
ited this from ABC, but it also occurred in occam, an older language. I don’t know if the
ABC authors got the idea from occam, or invented it independently, or if there was a com-
mon ancestor. The idea may be attributed to Don Knuth, who proposed this as early as
1974.

Download at Boykma.Com PYTHON

33

34

CHAPTER TWO

Of course, I could have chosen not to follow ABC’s lead, as I did in other areas (e.g., ABC
used uppercase for language keywords and procedure names, an idea I did not copy), but I
had come to like the feature quite a bit while using ABC, as it seemed to do away with a
certain type of pointless debate common amongst C users at the time, about where to
place the curly braces. I also was well aware that readable code uses indentation voluntar-
ily anyway to indicate grouping, and I had come across subtle bugs in code where the
indentation disagreed with the syntactic grouping using curly braces—the programmer
and any reviewers had assumed that the indentation matched the grouping and therefore
not noticed the bug. Again, a long debugging session taught a valuable lesson.

Strict formatting should produce a cleaner code and probably reduce the differences in
the “layout” of the code of different programmers, but doesn’t this sound like forcing a
human being to adapt to the machine, instead of the opposite path?

Guido: Quite the contrary—it helps the human reader more than it helps the machine;
see the previous example. Probably the advantages of this approach are more visible when
maintaining code written by another programmer.

New users are often put off by this initially, although I don’t hear about this so much any
more; perhaps the people teaching Python have learned to anticipate this effect and
counter it effectively.

I would like to ask you about multiple implementations of Python. There are four or five
big implementations, including Stackless and PyPy.

Guido: Stackless, technically, is not a separate implementation. Stackless is often listed as
a separate Python implementation because it is a fork of Python that replaces a pretty
small part of the virtual machine with a different approach.

Basically the byte code dispatch, right?

Guido: Most of the byte code dispatch is very similar. I think the byte codes are the same
and certainly all of the objects are the same. What they do different is when you have a
call from one Python procedure to another procedure: they do that with manipulation of
objects, where they just push a stack of stack frames and the same bit of C code remains in
charge. The way it’s done in C Python is that, at that point, a C function is invoked which
will then eventually invoke a new instance of the virtual machine. It’s not really the
whole virtual machine, but the loop that interprets the byte code. There’s only one of
those loops on the C stack in stackless. In traditional C Python, you can have that same
loop on your C stack many times. That’s the only difference.

PyPy, IronPython, Jython are separate implementations. I don’t know about something
that translates to JavaScript, but I wouldn’t be surprised if someone had gotten quite far
with that at some point. I have heard of experimental things that translate to OCaml and
Lisp and who knows what. There once was something that translated to C code as well.

Download at Boykma.Com

Mark Hammond and Greg Stein worked on it in the late 90s, but they found out that the

speedup that they could obtain was very, very modest. In the best circumstances, it would
run twice as fast; also, the generated code was so large that you had these enormous bina-
ries, and that became a problem.

Start-up time hurt you there.

Guido: I think the PyPy people are on the right track.

It sounds like you're g¢enerally supportive of these implementations.

Guido: I have always been supportive of alternate implementations. From the day that
Jim Hugunin walked in the door with a more or less completed JPython implementation,
I was excited about it. In a sense, it counts as a validation of the language design. It also
means that people can use their favorite language on the platform where otherwise they
wouldn’t have access to it. We still have a way to go there, but it certainly helped me isolate
which features were really features of the language that I cared about, and which features
were features of a particular implementation where I was OK with other implementations
doing things differently. That’s where we ended up on the unfortunately slippery slope of
garbage collection.

That’s always a slippery slope.

Guido: But it’s also necessary. I cannot believe how long we managed to live with pure
reference counting and no way to break cycles. I have always seen reference counting as a
way of doing garbage collection, and not a particularly bad one. There used to be this holy
war between reference counting versus garbage collection, and that always seemed rather
silly to me.

Regarding these implementations again, | think Python is an interesting space because it
has a pretty good specification. Certainly compared to other languages like Tcl, Ruby, and
Perl 5. Was that something that came about because you wanted to standardize the
language and its behavior, or because you were looking at multiple implementations, or
something else?

Guido: It was probably more a side effect of the community process around PEPs and the
multiple implementations. When I originally wrote the first set of documentation, I very
enthusiastically started a language reference manual, which was supposed to be a suffi-
ciently precise specification that someone from Mars or Jupiter could implement the lan-
guage and get the semantics right. I never got anywhere near fulfilling that goal.

ALGOL 68 probably got the closest of any language ever with their highly mathematical
specification. Other languages like C++ and JavaScript have managed with sheer will-
power of the standardization committee, especially in the case of C++. That’s obviously an
incredibly impressive effort. At the same time, it takes so much manpower to write a spec-
ification that is that precise, that my hope of getting something like that for Python never
really got implemented.

Download at Boykma.Com PYTHON

35

What we do have is enough understanding of how the language is supposed to work, and
enough unit tests, and enough people on hand that can answer to implementers of other
versions in finite time. I know that, for example, the IronPython folks have been very
conscientious in trying to run the entire Python test suite, and for every failure deciding if
the test suite was really testing the specific behavior of the C Python implementation or if
they actually had more work to do in their implementation.

The PyPy folks did the same thing, and they went one step further. They have a couple of
people who are much smarter than I, and who have come up with an edge case probably
prompted by their own thinking about how to generate code and how to analyze code in a
JIT environment. They have actually contributed quite a few tests and disambiguations
and questions when they found out that there was a particular combination of things that
nobody had ever really thought about. That was very helpful. The process of having mul-
tiple implementations of the language has been tremendously helpful for getting the spec-
ification of the language disambiguated.

Do you foresee a time when C Python may not be the primary implementation?

Guido: That’s hard to see. I mean some people foresee a time where .NET rules the world;
other people foresee a time where JVMs rule the world. To me, that all seems like wishful
thinking. At the same time, I don’t know what will happen. There could be a quantum
jump where, even though the computers that we know don’t actually change, a different
kind of platform suddenly becomes much more prevalent and the rules are different.

Perhaps a shift away from the von Neumann architecture?

Guido: I wasn’t even thinking of that, but that’s certainly also a possibility. I was more
thinking of what if mobile phones become the ubiquitous computing device. Mobile
phones are only a few years behind the curve of the power of regular laptops, which sug-
gests that in a few years, mobile phones, apart from the puny keyboard and screen, will
have enough computing power so that you don’t need a laptop anymore. It may well be
that mobile phones for whatever platform politics end up all having a JVM or some other
standard environment where C Python is not the best approach and some other Python
implementation would work much better.

There’s certainly also the question of what do we do when we have 64 cores on a chip,
even in a laptop or in a cell phone. I don’t actually know if that should change the pro-
gramming paradigm all that much for most of the things we do. There may be a use for
some languages that let you specify incredibly subtle concurrent processes, but in most
cases the average programmer cannot write correct thread-safe code anyway. Assuming
that somehow the ascent of multiple cores forces them to do that is kind of unrealistic. I
expect that multiple cores will certainly be useful, but they will be used for coarse-grained
parallelism, which is better anyway, because with the enormous cost difference between
cache hits and cache misses, main memory no longer really serves the function of shared
memory. You want to have your processes as isolated as possible.

36 CHAPTER TWO Download at Boykma.Com

How should we deal with concurrency? At what level should this problem be dealt with
or, even better, solved?

Guido: My feeling is that writing single-threaded code is hard enough, and writing multi-
threaded code is way harder—so hard that most people don’t have a hope of getting it
right, and that includes myself. Therefore, I don’t believe that fine-grained synchronization
primitives and shared memory are the solution—instead, I'd much rather see message-
passing solutions get back in style. I'm pretty sure that changing all programming lan-
guages to add synchronization constructs is a bad idea.

I also still don’t believe that trying to remove the GIL from CPython will work. I do believe
that some support for managing multiple processes (as opposed to threads) is a piece of the
puzzle, and for that reason Python 2.6 and 3.0 will have a new standard library module,
multiprocessing, that offers an API similar to that of the threading module for doing
exactly that. As a bonus, it even supports processes running on different hosts!

Expedients and Experience

Is there any tool or feature that you feel is missing when writing software?

Guido: If I could sketch on a computer as easily as I can with pencil and paper, I might be
making more sketches while doing the hard thinking about a design. I fear that I'll have to
wait until the mouse is universally replaced by a pen (or your finger) that lets you draw
on the screen. Personally, I feel terribly handicapped when using any kind of computer-
ized drawing tool, even if I'm pretty good with pencil and paper—perhaps I inherited it
from my father, who was an architect and was always making rough sketches, so I was
always sketching as a teenager.

At the other end of the scale, I suppose I may not even know what I'm missing for spe-
lunking large codebases. Java programmers have IDEs now that provide quick answers to
questions like “where are the callers of this method?” or “where is this variable assigned
to?” For large Python programs, this would also be useful, but the necessary static analysis
is harder because of Python’s dynamic nature.

How do you test and debug your code?

Guido: Whatever is expedient. I do a lot of testing when I write code, but the testing
method varies per project. When writing your basic pure algorithmic code, unit tests are
usually great, but when writing code that is highly interactive or interfaces to legacy APIs,
I often end up doing a lot of manual testing, assisted by command-line history in the shell
or page-reload in the browser. As an (extreme) example, you can’t very well write a unit
test for a script whose sole purpose is to shut down the current machine; sure, you can
mock out the part that actually does the shut down, but you still have to test that part,
too, or else how do you know that your script actually works?

Download at Boykma.Com PYTHON

37

Testing something in ditferent environments is also often hard to automate. Buildbot is
great for large systems, but the overhead to set it up is significant, so for smaller systems
often you just end up doing a lot of manual QA. I've gotten a pretty good intuition for
doing QA, but unfortunately it’s hard to explain.

When should debugging be taught? And how?

Guido: Continuously. You are debugging your entire life. I just “debugged” a problem
with my six-year-old son’s wooden train set where his trains kept getting derailed at a cer-
tain point on the track. Debugging is usually a matter of moving down an abstraction level
or two, and helped by stopping to look carefully, thinking, and (sometimes) using the
right tools.

I don’t think there is a single “right” way of debugging that can be taught at a specific
point, even for a very specific target such as debugging program bugs. There is an incredi-
bly large spectrum of possible causes for program bugs, including simple typos, “thinkos,”
hidden limitations of underlying abstractions, and outright bugs in abstractions or their
implementation. The right approach varies from case to case. Tools come into play mostly
when the required analysis (“looking carefully”) is tedious and repetitive. I note that
Python programmers often need few tools because the search space (the program being
debugged) is so much smaller.

How do you resume programming?

Guido: This is actually an interesting question. I don’t recall ever looking consciously at
how I do this, while I indeed deal with this all the time. Probably the tool T used most for
this is version control: when I come back to a project I do a diff between my workspace
and the repository, and that will tell me the state I'm in.

If T have a chance, I leave XXX markers in the unfinished code when I know I am about to
be interrupted, telling me about specific subtasks. I sometimes also use something I picked
up from Lambert Meertens some 25 years ago: leave a specific mark in the current source
file at the place of the cursor. The mark I use is “HIRO,” in his honor. It is colloquial Dutch
for “here” and selected for its unlikeliness to ever occur in finished code. :-)

At Google we also have tools integrated with Perforce that help me in an even earlier
stage: when I come in to work, I might execute a command that lists each of the unfin-
ished projects in my workspace, so as to remind me which projects I was working on the
previous day. I also keep a diary in which I occasionally record specific hard-to-remember
strings (like shell commands or URLs) that help me perform specific tasks for the project at
hand—for example, the full URL to a server stats page, or the shell command that rebuilds
the components I'm working on.

What are your suggestions to design an interface or an API?

Guido: Another area where I haven’t spent a lot of conscious thought about the best pro-
cess, even though I've designed tons of interfaces (or APIs). I wish I could just include a
talk by Josh Bloch on the subject here; he talked about designing Java APIs, but most of

38 CHAPTER TWO Download at Boykma.Com

what he said would apply to any language. There’s lots of basic advice like picking clear
names (nouns for classes, verbs for methods), avoiding abbreviations, consistency in
naming, providing a small set of simple methods that provide maximal flexibility when
combined, and so on. He is big on keeping the argument lists short: two to three argu-
ments is usually the maximum you can have without creating confusion about the order.
The worst thing is having several consecutive arguments that all have the same type; an
accidental swap can go unnoticed for a long time then.

I have a few personal pet peeves: first of all, and this is specific to dynamic languages,
don’t make the return type of a method depend on the value of one of the arguments; oth-
erwise it may be hard to understand what’s returned if you don’t know the relationship—
maybe the type-determining argument is passed in from a variable whose content you
can't easily guess while reading the code.

Second, I dislike “flag” arguments that are intended to change the behavior of a method in
some big way. With such APIs the flag is always a constant in actually observed parameter
lists, and the call would be more readable if the API had separate methods: one for each
flag value.

Another pet peeve is to avoid APIs that could create confusion about whether they return
a new object or modify an object in place. This is the reason why in Python the list method
sort() doesn’t return a value: this emphasizes that it modifies the list in place. As an alter-
native, there is the built-in sorted() function, which returns a new, sorted list.

Should application programmers adopt the “less is more” philosophy? How should they
simplify the user interface to provide a shorter learning path?

Guido: When it comes to graphical user interfaces, it seems there’s finally growing sup-
port for my “less is more” position. The Mozilla foundation has hired Aza Raskin, son of
the late Jef Raskin (codesigner of the original Macintosh UI) as a UI designer. Firefox 3 has
at least one example of a UI that offers a lot of power without requiring buttons, configu-
ration, preferences or anything: the smart location bar watches what I type, compares it to
things I've browsed to before, and makes useful suggestions. If T ignore the suggestions it
will try to interpret what I type as a URL or, if that fails, as a Google query. Now that'’s
smart! And it replaces three or four pieces of functionality that would otherwise require
separate buttons or menu items.

This reflects what Jef and Aza have been saying for so many years: the keyboard is such a
powertul input device, let’s use it in novel ways instead of forcing users to do everything
with the mouse, the slowest of all input devices. The beauty is that it doesn’t require new
hardware, unlike Sci-Fi solutions proposed by others like virtual reality helmets or eye
movement sensors, not to mention brainwave detectors.

There’s a lot to do of course—for example, Firefox’s Preferences dialog has the dreadful
look and feel of anything coming out of Microsoft, with at least two levels of tabs and
many modal dialogs hidden in obscure places. How am I supposed to remember that in
order to turn off JavaScript I have to go to the Content tab? Are Cookies under the Privacy

Download at Boykma.Com PYTHON

39

40

CHAPTER TWO

tab or under Security? Maybe Firefox 4 can replace the Preferences dialog with a “smart”
feature that lets you type keywords so that if I start typing “pass,” it will take me to the
section to configure passwords.

What do the lessons about the invention, further development, and adoption of your
language say to people developing computer systems today and in the forseeable future?

Guido: I have one or two small thoughts about this. I'm not the philosophical kind, so
this is not the kind of question I like or to which I have a prepared response, but here’s
one thing I realized early on that I did right with Python (and which Python’s predecessor,
ABC, didn’t do, to its detriment). A system should be extensible by its users. Moreover, a
large system should be extensible at two (or more) levels.

Since the first time I released Python to the general public, I got requests to modify the
language to support certain kinds of use cases. My first response to such requests is always
to suggest writing some Python code to cover their needs and put it in a module for their
own use. This is the first level of extensibility—if the functionality is useful enough, it may
end up in the standard library.

The second level of extensibility is to write an extension module in C (or in C++, or other
languages). Extension modules can do certain things that are not feasible in pure Python
(though the capabilities of pure Python have increased over the years). I would much
rather add a C-level API so that extension modules can muck around in Python’s internal
data structures, than change the language itself, since language changes are held to the
highest possible standard of compatibility, quality, semantic clarity, etc. Also, “forks” in
the language might happen when people “help themselves” by changing the language
implementation in their own copy of the interpreter, which they may distribute to others
as well. Such forks cause all sorts of problems, such as maintenance of the private changes
as the core language also evolves, or merging multiple independently forked versions that
other users might need to combine. Extension modules don’t have these problems; in
practice most functionality needed by extensions is already available in the C API, so
changes to the C API are rarely necessary in order to enable a particular extension.

Another thought is to accept that you don’t get everything right the first time. Early on
during development, when you have a small number of early adopters as users, is the time
to fix things drastically as soon as you notice a problem, never mind backward compatibil-
ity. A great anecdote I often like to quote, and which has been confirmed as truthful by
someone who was there at the time, is that Stuart Feldman, the original author of “Make”
in Unix v7, was asked to change the dependence of the Makefile syntax on hard tab char-
acters. His response was something along the lines that he agreed tab was a problem, but
that it was too late to fix since there were already a dozen or so users.

As the user base grows, you need to be more conservative, and at some point absolute
backward compatibility is a necessity. There comes a point where you have accumulated
so many misfeatures that this is no longer feasible. A good strategy to deal with this is

Download at Boykma.Com

what I'm doing with Python 3.0: announce a break with backward compatibility for one
particular version, use the opportunity to fix as many such issues as possible, and give the
user community a lot of time to deal with the transition.

In Python'’s case, we're planning to support Python 2.6 and 3.0 alongside each other for a
long time—much longer than the usual support lifetime of older releases. We're also offer-
ing several transitional strategies: an automated source-to-source conversion tool that is
far from perfect, combined with optional warnings in version 2.6 about the use of func-
tionality that will change in 3.0 (especially if the conversion tool cannot properly recog-
nize the situation), as well as selective back-porting of certain 3.0 features to 2.6. At the
same time, we're not making 3.0 a total rewrite or a total redesign (unlike Perl 6 or, in the
Python world, Zope 3), thereby minimizing the risk of accidentally dropping essential
functionality.

One trend I've noticed in the past four or five years is much greater corporate adoption of
dynamic languages. First PHP, Ruby in some context, definitely Python in other contexts,
especially Google. That’s interesting to me. | wonder where these people were 20 years
ago when languages like Tcl and Perl, and Python a little bit later, were doing all of these
useful things. Have you seen desire to make these languages more enterprise-friendly,
whatever that means?

Guido: Enterprise-friendly is usually when the really smart people lose interest and the
people of more mediocre skills have to somehow fend for themselves. I don’t know if
Python is harder to use for mediocre people. In a sense you would think that there is quite
a bit of damage you cannot do in Python because it’s all interpreted. On the other hand, if
you write something really huge and you don’t use enough unit testing, you may have no
idea what it actually does.

You’ve made the argument that a line of Python, a line of Ruby, a line of Perl, a line of
PHP, may be 10 lines of Java code.

Guido: Often it is. I think that the adoption level in the enterprise world, even though
there are certain packages of functionality that are helpful, is probably just a fear of very
conservative managers. Imagine the people in charge of IT resources for 100,000 people in
a company where IT is not a main product—maybe they are building cars, or doing insur-
ance, or something else, but everything they do is touched by computers. The people in
charge of that infrastructure necessarily have to be very conservative. They will go with
stuff that looks like it has a big name attached, like maybe Sun or Microsoft, because they
know that Sun and Microsoft screw up all the time, but these companies are obliged to
recover from those screwups and fix them, even if it takes five years.

Open source projects traditionally have just not offered that same peace of mind to the
average CIO. I don’t know exactly if and how and when that will change. It’s possible that
if Microsoft or Sun suddenly supported Python on their respective VMs, programmers in
enterprises would actually discover that they can get higher productivity without any
downsides by using more advanced languages.

Download at Boykma.Com PYTHON

41

Download at Boykma.Com

CHAPTER THREE

APL

In the late 1950s, while on the faculty of Harvard University, Kenneth Iverson
devised an extension of mathematical notation for the precise description of algo-
rithms. Then, along with Adin Falkoff and other researchers at IBM, the team grad-
ually turned the notation into a full-fledged programming language called APL. The
languagde uses an extended character set requiring a specialized keyboard and
appears on the page as strings of sometimes unfamiliar symbols—but the under-
lying consistency of the language makes it easy to learn, and its unmatched array-
processing capabilities make it extraordinarily powerful. Its spiritual descendents,
Jand K, continue APL’s legacy of concise and powerful algebraic manipulations.

Download at Boykma.Com

43

i

CHAPTER THREE

Paper and Pencil

I read a paper written by you and Ken lverson, “The Design of APL,” which said that the
first seven or eight years of development happened without any computer involved! This
let you change design aspects without having to worry about legacy issues. How did the
first software implementation influence the evolution of the language?

Adin Falkoff: Yes, the first years of the evolution of APL, when it had no name other
than “Iverson’s notation,” were mainly concerned with paper-and-pencil mathematical
applications, analysis of digital systems, and teaching. To a great extent, we thought of
programming as a branch of mathematics concerned with the discovery and design of
algorithms, and this concept was supported by the symbolic form of the notation. The
attractiveness of the notation as a general programming language became evident after a
while, and was advanced by the efforts of various people (in particular, Herb Hellerman at
IBM) who experimented with machine implementations of significant elements of the
notation, including primitive functions and array operations. Nevertheless, it is true that
throughout this period we had complete freedom to design the language without concern
for “legacy” issues.

The most significant early evolution of the language took place in two steps. First was the
writing and publication of “The Formal Description of System 360” [IBM Systems Journal,
1964]. In order to formally describe some of the behavior of this newly designed comput-
ing system, some additions and modifications to the notation described in Iverson’s book
(A Programming Language [Wiley]) were necessary. Second was the design of a type ele-
ment for Selectric-based terminals, which we undertook in anticipation of using the lan-
guage on a machine. This imposed significant restraints arising from the linear nature of
typewriting, and mechanical requirements of the Selectric mechanism. I believe there is
considerable detail on the influence of these two factors on the evolution of the language in
the paper you refer to, “The Design of APL” [IBM Journal of Research and Development, 1974].

The first comprehensive implementation of the language was, of course, APL\360. It nec-
essarily introduced facilities to write defined functions (i.e., programs)—something taken
for granted when using pencil and paper—and for controlling the environment in which
programs would be executed. The ideas introduced then, including the workspace and
library system, rules for scope of names, and the use of shared variables for communica-
tion with other systems, have persisted without significant change. Programs written for
APL\360 run without modification on the modern APL systems that I am familiar with.

It is fair to say that the presence of an implementation influenced further evolution of the
language by the strict application of the principle that new ideas must always subsume the
earlier ones, and, of course, by the constant critical examination of how the language was
working for new and different applications.

Download at Boykma.Com

When you defined the syntax, how did you picture the typical APL programmer?

Adin: We did not direct our thinking about syntax to programmers as such, but rather
conceived the language as being a communication medium for people, which incidentally
should also work for people communicating with machines. We did realize that users
would have to be comfortable with a symbolic language like algebra, but also felt that they
would come to appreciate the power of symbolic representation, as it facilitates formal
manipulation of expressions leading to more effective analysis and synthesis of algorithms.
Specifically, we did not believe a lot of experience or knowledge of mathematics was nec-
essary, and in fact used the APL system for teaching at the elementary and high school
level with some notable success.

As time went on, we found that some of the most skilled and experienced programmers
were attracted to APL, used it, and contributed to its development.

Did the complex syntax limit the diffusion of APL?

Adin: The syntax of APL and its effect on the acceptance of the language is well worth
discussing, although I do not agree with the statement that it is “complex.” APL was based
on mathematical notation and algebraic expressions, regularized by removing anomalous
forms and generalizing accepted notation. For example, it was decided that dyadic func-
tions like addition or multiplication would stand between their two arguments, and
monadic functions would consistently have the function symbols written before the argu-
ment, without exceptions such as are found in traditional math notation, so that absolute
value in APL has one vertical bar before the argument and not bars on both sides, and the
symbol for factorial in APL comes before the argument rather than following it. In this
respect, the syntax of APL was simpler than the syntax of its historical source.

The syntax of APL was also simpler than that of algebraic notation and other program-
ming languages in another very important way: the precedence rule for the evaluation of
expressions in APL is simply that all functions have the same precedence, and the user
does not have to remember whether exponentiation is carried out before multiplication,
or where defined functions fit into the hierarchy. The rule is simply that the rightmost
subexpression is evaluated first.

Hence, I don’t believe that the syntax of APL limited the diffusion of the language,
although the character set, using many nonalphabetic symbols not easily available on
standard keyboards, probably did have such an effect.

How did you decide to use a special character set? How did that character set evolve
over time?

Adin: The character set was defined by the use of conventional mathematical notation,
augmented by a few Greek letters and some visually suggestive symbols like the quad.

Download at Boykma.Com APL

45

There was also the practical influence of the linear typewriter limitation, leading to the
invention of some characters that could be produced by overstriking. Later on, as termi-
nals and input devices became more versatile, these composite characters became primi-
tive symbols in their own right, and a few new characters were introduced to
accommodate new facilities, such as the diamond for a statement separator.

Was there a conscious decision to use the limited resources of the time more
productively?

Adin: The character set definitely was influenced by the desire to optimize the use of the
limited resources available at the time; but the concise, symbolic form was developed and
maintained because of the conviction that it facilitated analysis and formal manipulation
of expressions. Also, the brevity of programs compared to equivalent ones written in other
languages makes it easier to comprehend the logical flow of a program once the effort is
made to read it in the concise APL representation.

I would think people needed a lot of training to learn the language, especially the
character set. Was there a process of natural selection, which meant that APL
programmers were experts at the language? Were they more productive? Did they write
higher-quality code with fewer bugs?

Adin: Learning APL to the point of being able to write programs at the level of FORTRAN,
for example, was actually not difficult or lengthy. Programming in APL was more produc-
tive because of the simplicity of the rules, and the availability of primitive functions for
data manipulation like sorting, or mathematical functions like matrix inversion. These fac-
tors contributed to the conciseness of APL programs, which made them easier to analyze
and debug. Credit for productivity must also be given to the APL implementations, using
workspaces with all their useful properties, and the interactive terminal-based interpretive
systems.

A super-concise form of expression might be incredibly useful on devices with a small
screen like PDAs or smartphones! Considering that APL was first coded on big iron such
as IBM System/360, would it be extensible to handle modern projects that need to
manage network connections and multimedia data?

Adin: An implementation of APL on a handheld device would at the very least provide a
very powerful hand calculator; and I see no problem with networks and multimedia, as
such applications have been managed in APL systems for a very long time. Tools for man-
aging GUIs are generally available on modern APL systems.

Early on in the development of APL systems, facilities for managing host operating sys-
tems and hardware from within APL functions were introduced, and were utilized by APL
system programmers to manage the performance of APL itself. And commercial APL time-
sharing systems dependent upon networks for their economic viability used APL for man-
aging their networks.

46 CHAPTER THREE Download at Boykma.Com

It is true that the first commercially viable APL systems were coded on large machines, but
the earliest implementations, which demonstrated the feasibility of APL systems, were
done on relative small machines, such as the IBM 1620 and the IBM 1130 family, includ-
ing the IBM 1500, which had significant usage in educational applications. There was
even an implementation on an early experimental desktop machine, dubbed “LC” for
“low cost,” that had but a few bytes of memory and a low-capacity disk. The evolution of
IBM APL implementation is described in some detail in the paper “The IBM Family of APL
Systems” [IBM Systems Journal, 1991].

Elementary Principles

When you pursued standardization, was it a deliberate decision?

Adin: We surely started standardization fairly early; in fact I think I wrote a paper about
it, and we got to be part of ISO. We always wanted to standardize things and we managed
to a large extent to do that. We discouraged people from fiddling around with the basic
structures of the language, adding arbitrary kind of things that would complicate the syn-
tax, or violate some of the elementary principles we were trying to maintain.

What was your main desire for standardization, compatibility or conceptual purity?

Adin: The desire of standardization is an economic issue. We surely wanted APL to be via-
ble economically, and since a lot of different people were implementing and using it, it
seemed a good idea to have a standard.

Several different vendors had different APL compilers. Without strong standardization,
what happens when you have an extension that works on one system but not on
another?

Adin: That is something worked on rather carefully by the APL standardization commit-

tees, and efforts were made to compromise between extensibility and purity.

You want people to be able to solve problems you haven't anticipated, but you don't
want them to remove the essential nature of your system. Forty years later, how do you
think the language holds up? Are the design principles you chose still applicable?

Adin: I think so; I really don’t see anything really wrong.

Is that because you spent a lot of time designing it carefully or because you had a very
strong theoretical background with algebra?

Adin: I think we were a couple of reasonably smart people with a belief in the concepts of
simplicity and practicality, and an unwillingness to compromise that vision.

I found it too much trouble to try to learn and remember all the rules in other languages
so I tried to keep it simple from that standpoint, so that I could use it.

Download at Boykma.Com APL

47

Some of our way of thinking shows up in papers, especially the ones jointly authored by
Iverson and me. I myself later wrote a paper that was called “A Note on Pattern Matching:
Where do you find the match to an empty array?”[APL Quote Quad, 1979], which used
some nice reasoning involving small programs and algebraic principles, to obtain the
reported results, which turned out to be consistent and useful. The paper looked at various
possibilities, and found that the one simplest to express works out better than any other.

I found it really fascinating to build a language from a small set of principles and
discovering new ideas built on those principles. That seems like a ¢ood description of
mathematics. What is the role of math in computer science and programming?

Adin: I believe that computer science is a branch of mathematics.

Programming of mathematical computations is obviously part of mathematics, especially
the numerical analysis required to constantly maintain compatibility between discrete dig-
ital operations and the continuity of theoretical analysis.

Some other thoughts that come to mind are: the impetus from math problems that can be
solved only by extensive computations that inspire need for speed; the discipline of logical
thought required for math and carried over to programming of all kinds; the notion of

algorithms, which are a classical mathematical tool; and the various specialized branches of
mathematics, such as topology, that lend themselves to analysis of computational problems.

I have read some other discussions where you and other people suggested that one of
the interesting applications was using APL to teach programming and mathematics at the
elementary and high school levels.

Adin: We did some of that, particularly at the beginning, and we had a little fun with it.

At that time we only had typewriter terminals and we made some available to some local
private schools. There was one in particular where problem students were supposed to be
taught, and we gave them exercises to do on the typewriter and turned them loose.

The fun part was that we found that some of these students who were supposed to be
resistant to learning broke into the school after hours so they could do more work on it.
They were using typewriter terminals hooked to our time-sharing system.

So they enjoyed that so much they suddenly had to do it even afterward?
Adin: Yes.

You used APL to teach “programming thinking” to nonprogrammers. What made APL
attractive for nonprogrammers?

Adin: In the early days one of the things was you didn’t have all this overhead, you didn't
have to make declarations before you added two numbers, so if you wanted to add 7 and
5 you just wrote down 7 + 5, instead of saying there is a number called 7 and there is a
number called 5, these are numbers, floating point or not floating point, and the resultis a
number and I want to store the result here, so there was a lower barrier in APL to doing
what you wanted.

48 CHAPTER THREE Download at Boykma.Com

When someone is learning to program, the initial step toward doing that first thing is very
small. You basically write down what you want to do, and you don’t have to spend time
pleasing a compiler to get it to work.

Adin: That’s right.

Easy to start and easy to play with. Does this technique let people become programmers
or increase their programming knowledge?

Adin: The easy accessibility makes it easy to experiment, and if you can experiment and
try out different things, you learn, and so I think that is favorable toward the development
of programming skills.

The notation that you chose for APL is different from traditional al¢ebraic notation.

Adin: Well, it’s not that different...the precedence rules are different. They are very sim-
ple: you go from right to left.

Did you find that much easier to teach?

Adin: Yes, because there is only one rule and you don’t have to say that if it’s a defined
function, you go this way, and if it’s exponentiation, it has precedence over multiplication,
or stuff like that. You just say, “look at the line of the instructions and take it from right to
left.”

Was this a deliberate design decision to break with familiar notation and precedence in
favor of greater simplicity?

Adin: That’s right. Greater simplicity and greater generality.

I think Iverson was mainly responsible for that. He was quite good at algebra and he was
very interested in teaching. One example he liked to use was the representation of poly-
nomials, which is extremely simple in APL.

When | first saw that notation, even though it was unfamiliar, it did seem conceptually
much simpler overall. How do you recognize simplicity in a design or an implementation?
Is that a matter of good taste or experience, or is there a rigorous process you apply to try
to find optimal simplicity?

Adin: I think to some extent it must be subjective, because it depends somewhat on your

experience and where you come from. I would say the fewer there rules are, the simpler it
is in general.

You started from a small set of axioms and you can build from there, but if you
understand that small set of axioms, you can derive more complexity?

Adin: Well, let’s take this matter of precedence. I think it’s simpler to have the precedence
based on a simple form from right to left, than on a basis of a table that says this function
goes first and that function goes second. I think it is one rule versus an almost limitless
number of rules.

Download at Boykma.Com APL

49

50

CHAPTER THREE

You see, in any particular application you set up your own set of variables and functions,
and for a particular application you might find it simpler to write some new rules, but if
you are looking at a general language like APL, you want to start with the fewest possible
number of rules.

To give people designing systems built with the language more opportunity to evolve?
Adin: People who are building applications are in fact building languages; fundamentally,
programming has to do with developing languages suitable for particular applications.
You express the problem in a language specific to its domain.

Adin: But then those objects, notably the nouns and the verbs, the objects and the func-
tions, they have to be defined in something, for example in a general-purpose language
like APL.

So you use APL to define these things, but then you set up your operations to facilitate the
kind of things you want to do in that application.

Is your concern constructing the building blocks people can use to express themselves?

Adin: My concern is giving them the basic building blocks if you like, the fundamental
tools for constructing the building blocks that are suitable and appropriate for what they
are trying to accomplish in the field in which they are working.

It seems to be a concern shared by other language designers; | think of Chuck Moore with
Forth, or John McCarthy with Lisp, and Smalltalk in the early 70s.

Adin: I'm sure that’s the case.

McCarthy, I know, is a theoretical kind of person and he was concerned with developing a
system to express the lambda calculus effectively, but I don’t think the lambda calculus is
as convenient for most purposes as plain old algebra, from which APL derives.

Suppose | want to design a new programming language. What's the best piece of advice
you can give me?

Adin: I guess the best thing I can say is do something that you enjoy, something that
pleases you to work with, something that helps you accomplish something that you would
like to do.

We were always very personal in our approach, and I think most designers are, as I read
what people have to say. They started doing things that they wanted to do, which then
turned out to be useful generally.

Download at Boykma.Com

When you were designing APL, were you able to see at some point “we are going in the
wrong direction here; we need to scale back this complexity” or “we have several
different solutions; we can unify them into something much simpler”?

Adin: That is approximately right, but there was usually a question of “is this a generali-
zation which subsumes what we already have, and what is the likelihood that it is going to
enable us to do a lot more with very little further complication?”

We paid a lot of attention to end conditions—what happens in a limit when you go from 6
to 5 to 4 down to 0, for example. Thus, in reduction you are applying a function like sum-
mation to a vector, and if you are summing up a vector that has # elements and then »
minus one elements, and so on, what happens when you eventually have no elements?
What's the sum? It has to be 0 because that’s the identity element.

In the case of multiplication, the multiplication over an empty vector goes to 1, because
that’s the identity element for that function.

You mentioned looking at several different solutions and trying to ¢eneralize and asking
yourself the question of what happens when approaching 0, for example. If you hadn’t
already known that when you do a reduction, you need to end up at the identity element
for when n is 0, you could look at both those cases and say “Here is the aréument we
make: it is 0 when this case and it’s 1 in this case, because it is the identity element.”

Adin: That’s right. That’s one of the processes we used.

What happens in the special cases is very important, and when you use APL effectively, you
keep applying that criterion to the more elaborate functions that you might be developing
for a particular application. This often leads to unexpected but gratifying simplification.

Do the design techniques you use when creating a language inform the design techniques
people might use when programming in the language?

Adin: Yes, because as I said before, programming is a process of designing languages. I
think that’s a very fundamental thing, which is not often mentioned in the literature as far
as I know.

Lisp programmers do, but in a lot of the languages that came afterward, especially Algol
and its C derivatives, people don’t seem to think this way. Is there a divide between what
is built in the language and what’s not, where everything else is second class?

Adin: Well, what do we mean by second class? In APL the so-called second class follows
the same rules as the first class, and we don’t have any problem there.

You can make the same argument for almost all of Lisp or Scheme or Smalltalk, but C has
a distinct division between operators and functions, and user-created functions. Is
making that distinction sharp between these entities a design mistake?

Adin: I don’t know if I would call it a mistake, but I think it’s simpler to have the same
rules apply to both what’s primitive and not primitive.

Download at Boykma.Com APL

51

52

CHAPTER THREE

What's the biggest mistake you've made with regard to design or programming? What did
you learn from it?

Adin: When work on APL first began, we consciously avoided making design decisions
that catered to the computer environment. For example, we eschewed the use of declara-
tions, seeing their use as an unnecessary burden on the user when the machine could eas-
ily determine the size and type of a data object from the object itself at the time of its input
or generation. In the course of time, however, as APL became more widely used with
more and more vested interests, hardware factors were increasingly difficult to avoid.

Perhaps the biggest mistake that I personally made was to underestimate advances in
hardware and become too conservative in system design. In contemplating early imple-
mentation of APL on the PC, for instance, I advocated leaving out recent language exten-
sions to general arrays and complex numbers because these would strain the capacity of
the extant hardware to provide satisfactory performance. Fortunately, I was overruled,
and it was not long before major increases in PC memory and processor speeds made such
powerful extensions completely feasible.

It is hard to think of big mistakes made in programming because one expects to make
errors in the course of writing a program of reasonable complexity. It then depends on the
programming tools how the error grows, when it is discovered, and how much has to be
redone to recover from it. Modularization and ready reuse of idiomatic code fragments, as
follows from the functional programming style fostered by APL, tends to limit the genera-
tion and propagation of errors so they don’t become big mistakes.

As for mistakes in the design of APL itself, our method of development, using consensus
among the designers and implementers as the ultimate deciding factor, and feedback from
users gaining practical experience in a diversity of applications as well as our own use of
the language before design was frozen, helped us avoid serious errors.

However, one person’s exercise of principle may be another’s idea of a mistake, and even
over long periods of time, differences may not be empirically resolvable. Two things come
to mind.

One is the character set. There was from the earliest times considerable pressure to use
reserved words instead of the abstract symbols chosen to represent primitive functions.
Our position was that we were really dealing with extensions to mathematics, and the
evolution of mathematical notation was clearly in the direction of using symbols, which
facilitated formal manipulation of expressions. Later on, Ken Iverson, who had an abiding
interest in the teaching of mathematics, chose to limit the character set to ASCII in his fur-
ther work, on the language J, so that J systems could be easily accessible to students and
others without specialized hardware. My own inclination was and is to stick with the sym-
bolic approach; it’s more in keeping with history and ultimately easier to read. Time will
tell if either direction is mistaken, or if it doesn’t really matter.

The second thing that comes to mind as possibly leading to a significant mistake in direc-
tion that may never be decided is the treatment of general arrays, i.e., arrays whose scalar

Download at Boykma.Com

elements may themselves have an accessible structure within the language. After APL\360
was established as an IBM product (one of the very first such when IBM unbundled its
software and hardware in 1966 or 1967), we began to look at extensions to more general
arrays and had extensive studies and discussions regarding the theoretical underpinnings.
Ultimately APL systems have been built with rival ways of treating scalar elements and
syntactic consequences. It will be interesting to see how this evolves as the general interest
in parallel programming becomes more commercially important.

Parallelism

What are the implications (for the design of applications) of thinking about data in
collections rather than as individual units?

Adin: This is a rather large subject, as indicated by the spread of “array languages” and the
introduction of array primitives in languages like FORTRAN, but I think there are two sig-
nificant aspects to thinking in terms of collections.

One, of course, is the simplification of the thought process when not bogged down in the
housekeeping details of dealing with individual items. It is closer to our natural way of
thinking to say, for example, how many of the numbers in this collection are equal to
zero, and write a simple expression that produces the desired result, than to start thinking
in terms of a loop in any of its derivative forms.

The second is that possibilities for parallelism are made more evident in programs acting
directly on collections, leading to more efficient utilization of modern hardware.

There’s been some talk in modern programming languages about adding higher-order
features to languages such as C++ or Java—languages where you spend a lot of time
writing the same for () loop over and over again. For example, | have a collection of
things and | want to do something to each one of them. Yet APL solved this problem 40~
45 years ago!

Adin: Well, I don’t know how many years ago, but there are sort of two stages there. One
is the use of arrays as primitive, and second stage was the introduction of the operator
called each, which basically applies any arbitrary function to any collection of items. But
there were always some questions like “Do we want to put in primitives for looping specif-
ically?” We decided we didn’t want to do that because it complicated the syntax too much,
and it was easy enough to write the few needed loops in the standard way.

Complicate the syntax for the implementation or for users?

Adin: For both: people have to read it, machines have to read it; the syntax is either sim-
ple or not.

You would put in new kinds of statements, and that’s clearly a complication. Now the
question is “Is the payoff worth it?”, and that’s where the design judgment comes in. And
we always came down on the side that we didn’t want to have new kinds of syntax for
handling loops since we could do it quite conveniently with what we had.

Download at Boykma.Com APL

53

54

CHAPTER THREE

You said that APL really has an advantage for parallel programming. | can understand the
use of arrays as the primitive data structure for the language. You also mentioned the use
of shared variables. How do they work?

Adin: A shared variable in APL is a variable that is accessible to more than one processor
at a time. The sharing processors can both be APL processors or one can be of a different
sort. For example, you can have a variable, let’s call it X, and, as far as APL is concerned,
reading and writing X is not different from an ordinary variable. However there might be
another processor, let’s say a file processor, which also has access to X, it being a shared
variable, and whatever value APL might give to X, the file processor uses that value
according to its own interpretation. And similarly, when it gives a value to X, which is
then read by APL, the APL processor similarly applies its own knowledge to it, however it
chooses to interpret that value. And this X is a shared variable.

What we have in APL systems like APL2 of IBM is some protocol for managing access to
this variable so that you don’t run into trouble with different kinds of race conditions.

Is this parallelization you were talking about something the compiler can determine
automatically? Suppose that | want to multiply two arrays and add the value to each
element of an array. This is easy to express in APL, but can the compiler perform implicit
parallelization on that?

Adin: The definition in APL is that it doesn’t matter in what order you do the operations
on the elements of an array; therefore, the compiler or the interpreter or whatever imple-
mentation you have is free to do them simultaneously or in any arbitrary sequence.

Besides enabling simplicity at the language level, it can give implementers tremendous
flexibility to change the way the implementation works, taking advantage of new
hardware, or give you a mechanism to exploit things like automatic parallelization.

Adin: That'’s right, because according to the definition of the language, which is of course
the definition of what happens when the processor is applied, it doesn’t matter what order
you do them. That was a very deliberate decision.

Was that a unique decision in the history of languages of the time?

Adin: I am not that familiar with the history of languages, but since we were basically the
only serious array-oriented language, it probably was unique.

It’s interesting to talk about collections and large data sets, which are clearly
preoccupations of modern programmers. APL preceded the invention of the relational
database. Now we have a lot of data in structures containing different data types, in
relational databases, and in large unstructured collections such as web pages. Can APL
handle these well? Does it offer models that people using more popular languages such
as SQL, PHP, Ruby, and Java can learn from?

Adin: APL arrays can have as elements both scalars, which have no internal structure,
and nonscalars, which may be of any complexity. Nonscalar elements are recursively
structured of other arrays. “Unstructured” collections such as web pages can therefore be
conveniently represented by APL arrays and manipulated by primitive APL functions.

Download at Boykma.Com

Regarding very large arrays, APL has the facility to treat external files as APL objects. Once
an association has been made between a name in the workspace and an external file,
operations can be applied to the file using APL expressions. It appears to the user as if the
file is within the workspace, even though in actuality it may be many times larger than
the workspace size.

It is very hard to give specific details of what designers of other languages can learn from
APL, and it would be presumptuous of me to go into particulars of the languages you
mention, as I am not an expert in any of them. However, as I read about them in the liter-
ature I see that by and large the principles that guided the design of APL—which we
described, for example, in our 1973 paper “The Design of APL"—have continued to inform
later work in language design.

Of the two overriding principles, simplicity and practicality, the latter seems to have fared bet-
ter; simplicity is a more difficult objective to achieve since there are no practical constraints

on complexity. We strove for simplicity in APL by carefully defining the scope of the prim-
itive operations it would allow, maintaining the abstract nature of APL objects, and resist-
ing the temptation to include special cases represented by the operations of other systems.

An illustration of this is the fact that the concept of a “file” does not appear in APL. We
have arrays that may be treated as files as called for by an application, but there are no
primitive functions specifically designed for file manipulation as such. The practical need
for efficiency in file management, however, early on fostered the development of the
shared-variable paradigm, which itself is a general concept useful in a multitude of appli-
cations where the APL program needs to invoke facilities of another (APL or non-APL)
auxiliary processor.

Later on, an additional facility, using the general concept of namespaces, was designed to
allow APL programs to directly manipulate objects outside of the workspace, including
access to Java fields and methods, extremely large data collections, compiled programs in
other languages, and others. The user interface to both the shared-variable and namespace
facilities rigorously maintains APL syntax and semantics and thereby keeps it simple.

Without going into detail, therefore, it is reasonable to say that the newer languages could
benefit by maintaining a strict adherence to their own primitive concepts, defining each to
be as general as possible within the context of the applications they are addressing.

As for specific characteristics of APL as a model, APL has demonstrated that declarations
are unnecessary, although they may contribute to efficiency of execution in some situa-
tions, and that the number of different data types can be quite small. Newer languages
may benefit by aiming in these directions rather than taking it for granted that the user
has to help out the computer by providing such implementation-related information.

Also, the concept of a pointer is not a primitive in APL, and has never been missed. Of
course, where possible the primitive operations in the language should be defined on col-
lections of data having an abstract internal structure, such as regular arrays, trees, and
others.

Download at Boykma.Com

55

You are correct in noting that APL preceded the invention of the relational database. Both
Dr. E. F. (Ted) Codd and the APL group were at the IBM T. J. Watson Research Center in
the 1960s, when he was developing the relational database concepts, and I believe that we
had a very strong influence on that work. I recall in particular a heated discussion
between us one afternoon where we demonstrated that simple matrices, rather than com-
plex scalar pointer systems, could be used for representing the relationships among data
entities.

Legacy

I know that lots of design influences in Perl came from APL. Some people say some of the
crypticness of Perl comes from APL. | don’t know if this is a compliment or not.

Adin: Let me give you an example of that kind of compliment. There is a lot of politics
involved in the design and use of programming languages, particularly in a place like IBM
where it is a business. At various times, people tried to set up competitive experiments to
see if APL would do better than, say, PL1 or FORTRAN. The results were always loaded,
because the judges were people on the other side, but there is one comment that I always
remember from some functionary: he said APL can’t be very good because two of the
smartest guys he knew, Iverson and Falkoff, can’t make people believe in it.

What do the lessons about the invention, further development, and adoption of your
language say to people developing computer systems today and in the foreseeable
future?

Adin: Decisions about system design are not purely technical or scientific. Economic and
political considerations have a strong influence, and especially so in situations where there
is potential flexibility in the underlying technicalities, as in the design of languages and
systems.

In the period when APL was taking hold as an important tool being used within IBM in
the mid-1960s, and consideration was being given to making it into a product, we had to
contend with an IBM “language czar,” who decreed that only PL/1 would be supported by
the company in the future—except, of course, for FORTRAN and COBOL, which were
already entrenched in the industry and could not be totally abandoned.

As history has shown, this was an unrealistic position for the company to take and was
bound to fail, but this was not so obvious at the time, considering the dominance of IBM
in the computing industry and the dominance of certain factions within the power struc-
ture of the company.

We had to fight the policy to get the necessary support for APL to survive. The battle took
place on several fronts: as members of the IBM Research Division, we exploited as much
as possible opportunities to give professional talks, seminars, and formal classes so as to
imbed awareness of APL’s unique characteristics in the technical consciousness of the
time; we enlisted—wherever we could find them—people of influence within the com-
pany to countervail against the administrative power structure; we spread and supported

56 CHAPTER THREE Download at Boykma.Com

the internal use of our APL\360 system to development and manufacturing locations; we
leveraged important customers’ interest in APL systems to force the availability of APL
outside the company, at least on an experimental basis; and made allies within the ranks
of the marketing division. And we were successful, to the point where APL\360 was
among the very first IBM program products to be marketed after the unbundling of hard-
ware and software in the late 1960s.

A very significant milestone was accomplished on account of the interest that technical
talks and demonstrations had engendered at the NASA Goddard Space Center. In 1966
that facility requested access to our internal APL system in order to experiment with its
use. They were a very important customer, and we were urged by the IBM marketing peo-
ple to comply with their request. However, we demurred, insisting that we would only
agree to do this if we were first enabled to give a weeklong instructional course on site at
the Goddard Space Center.

We obtained this agreement, but then ran into difficulty implementing it: time-sharing
systems like APL\360 at the time required terminals connecting to the central system
through acoustic modems working with specialized telephone “data sets.” These tele-
phone sets were also used on the other end, attached to the central computer, and they
were in short supply. After all the administrative agreements to go ahead with the project
had been reached, we found that neither the New York- nor Washington D.C.-area phone
companies could provide the units needed for the projected classes at the Space Center.

While it was their normal practice to work only with their own equipment, the D.C.
phone company agreed to install any data sets we could somehow provide. But as much as
our IBM communication managers tried to persuade the New York phone company to
find data sets somewhere, they were not able to produce any, although they somehow
conveyed the idea that they would look the other way if we happened to use their equip-
ment already in our possession in ways they could not officially condone.

So we proceeded to disable half of the lines coming into our central computer, and had the
data sets thus freed taken down to the Space Center in an IBM station wagon. They were
then installed off the record by the local phone company and we were able to go ahead
with our course, thus establishing the first off-premises use of the APL\360 system by a
non-IBM entity, getting it out the door despite the support-only-PL/1 policy.

What do you regret most about the language?

Adin: We gave the design of APL our best efforts and worked hard in the political arena to
have it accepted and widely used. Under the circumstances, I don’t find anything to regret
about the language. One possible regret in hindsight is that we did not start sooner and
put greater effort behind the development of an effective compiler, but we can’t know
what this might have cost in tradeoffs, given the extant limitations of resources. Further-
more, there is reason to believe that current interest in parallel programming and the
adoption of APL-like array operations in traditional compiled languages like FORTRAN
will result in the equivalent in due course.

Download at Boykma.Com

APL

57

How do you define success in terms of your work?

Adin: APL proved to be a very useful tool in the development of many aspects of IBM’s
business. It provided a much simplified approach to using computers that allowed
researchers and product developers to apply themselves more efficiently to the substantive
problems they were working on, from theoretical physics to development of flat-screen
displays. It was also used to prototype major business systems such as assembly lines and
warehouses, allowing them to get started quickly and tested before being frozen in imple-
mentations using other programming systems.

We were successful in making APL into a whole line of IBM products, and providing lead-
ership for other computer companies to provide their own APL systems conforming to an
international standard.

APL also found substantial use in academic institutions as a tool and a discipline, thus ful-
filling one of the principal purposes of its development—its use in education.

APL of course was the forerunner of programming languages and systems treating arrays
as primitive data objects and using shared variables for managing simultaneity, and as
such will no doubt have a strong influence on further developments involving parallel
programming. It is very gratifying to see that in the last few months, three separate com-
puter industry consortiums have been established to work in this field.

58 CHAPTER THREE Download at Boykma.Com

CHAPTER FOUR

Forth

Forth is a stack-based, concatenative language designed by Chuck Moore in the
1960s. Its main features are the use of a stack to hold data, and words that operate
on the stack, popping arguments and pushing results. The language itself is small
enough that it runs on anything from embedded machines to supercomputers,
and expressive enough to build useful programs out of a few hundred words. Suc-
cessors include Chuck Moore’s own colorForth, as well as the Factor programming
language.

Download at Boykma.Com

59

60

CHAPTER FOUR

The Forth Language and Language Design

How do you define Forth?

Chuck: Forth is a computer language with minimal syntax. It features an explicit param-
eter stack that permits efficient subroutine calls. This leads to postfix expressions (opera-
tors follow their arguments) and encourages a highly factored style of programming with
many short routines sharing parameters on the stack.

I read that the name Forth stands for fourth-generation software. Would you like to tell us
more about it?

Chuck: Forth is derived from “fourth,” which alludes to “fourth-generation computer
language.” As I recall, I skipped a generation. FORTRAN/COBOL were first-generation
languages; Algol/Lisp, second. These languages all emphasized syntax. The more elaborate
the syntax, the more error checking is possible. Yet most errors occur in the syntax. I
determined to minimize syntax in favor of semantics. And indeed, Forth words are loaded
with meaning.

You consider Forth a language toolkit. | can understand that view, given its relatively
simple syntax compared to other languages and the ability to build a vocabulary from
smaller words. Am | missing anything else?

Chuck Moore: No, it’s basically the fact that it’s extremely factored. A Forth program
consists of lots of small words, whereas a C program consists of a smaller number of larger
words.

By small word, I mean one with a definition typically one line long. The language can be
built up by defining a new word in terms of previous words and you just build up that
hierarchy until you have maybe a thousand words. The challenge there is 1) deciding
which words are useful, and 2) remembering them all. The current application I'm work-
ing on has a thousand words in it. And I've got tools for searching for words, but you can
only search for a word if you remember that it exists and pretty much how it’s spelled.

Now, this leads to a different style of programming, and it takes some time for a program-
mer to get used to doing it that way. I've seen a lot of Forth programs that look very much
like C programs transliterated into Forth, and that isn’t the intent. The intent is to have a
fresh start. The other interesting thing about this toolkit, words that you define this way
are every bit as efficient or significant as words that are predefined in the kernel. There’s
no penalty for doing this.

Does the externally visible structure consisting of many small words derive from Forth’s
implementation?

Chuck: It’s a result of our very efficient subroutine call sequences. There’s no parameter
passing because the language is stack-based. It’s merely a subroutine call and return. The
stack is exposed. The machine language is compiled. A switch to and from a subroutine is
literally one call instruction and one return instruction. Plus you can always reach down

Download at Boykma.Com

into the equivalent of an assembly language. You can define a word that will execute
actual machine instructions instead of subroutine calls, so you can be as efficient as any
other language, maybe more efficient than some.

You don’t have the C calling overhead.

Chuck: Right. This gives the programmer a huge amount of flexibility. If you come up
with a clever factoring of a problem, you can not only do it efficiently, you can make it
extraordinarily readable.

On the other hand, if you do it badly, you can end up with code that no one else can read—
code your manager can’t understand, if managers can understand anything. And you can
create a real mess. So it’s a two-edged sword. You can do very well; you can do very badly.

What would you say (or what code would you show) to a developer who uses another
programming language to make him interested in Forth?

Chuck: It is very hard to interest an experienced programmer in Forth. That’s because he
has invested in learning the tools for his language/operating system and has built a library
appropriate for his applications. Telling him that Forth would be smaller, faster, and easier
is not persuasive compared to having to recode everything. A novice programmer, or an
engineer needing to write code, doesn’t face that obstacle and is much more receptive—as
might be the experienced programmer starting a new project with new constraints, as
would be the case with my multicore chips.

You mentioned that a lot of Forth programs you’ve seen look like C programs. How do
you design a better Forth program?

Chuck: Bottom-up.

First, you presumably have some I/0 signals that you have to generate, so you generate
them. Then you write some code that controls the generation of those signals. Then you
work your way up until finally you have the highest-level word, and you call it go and
you type go and everything happens.

I have very little faith in systems analysts who work top-down. They decide what the
problem is and then they factor it in such a way that it can be very difficult to implement.

Domain-driven design suggests describing business logic in terms of the customer’s
vocabulary. Is there a connection between building up a vocabulary of words and using
the terms of art from your problem domain?

Chuck: Hopefully the programmer knows the domain before he starts writing. I would
talk to the customer. I would listen to the words he uses and I would try to use those
words so that he can understand what the program’s doing. Forth lends itself to this kind
of readability because it has postfix notation.

If I was doing a financial application, I'd probably have a word called “percent.” And you
could say something like “2.03 percent”. And the argument’s percent is 2.03 and every-
thing works and reads very naturally.

Download at Boykma.Com FORTH

61

62

CHAPTER FOUR

How can a project started on punch cards still be useful on modern computers in the
Internet era? Forth was designed on/for the IBM 1130 in 1968. That it is the language of
choice for parallel processing in 2007 is surely amazing.

Chuck: It has evolved in the meantime. But Forth is the simplest possible computer lan-
guage. It places no restrictions upon the programmer. He/she can define words that suc-
cinctly capture aspects of a problem in a lean, hierarchical manner.

Do you consider English readability as a goal when you design programs?

Chuck: At the very highest level, yes, but English is not a good language for description or
functionality. It wasn’t designed for that, but English does have the same characteristic as
Forth in the sense that you can define new words.

You define new words by explaining what they are in previously defined words mostly. In
a natural language, this can be problematic. If you go to a dictionary and check that out,
you find that often the definitions are circular and you don’t get any content.

Does the ability to focus on words instead of the braces and brackets syntax you might
have in C make it easier to apply ¢ood taste to a Forth program?

Chuck: I would hope so. It takes a Forth programmer who cares about the appearance of
things as opposed merely to the functionality. If you can achieve a sequence of words that
flow together, it’s a good feeling. That’s really why I developed colorForth. I became
annoyed at the syntax that was still present in Forth. For instance, you could limit a com-
ment by having a left parenthesis and a right parenthesis.

Ilooked at all of those punctuation marks and said, “Hey, maybe there’s a better way.”
The better way was fairly expensive in that every word in the source code had to have a
tag attached to it, but once I swallowed that overhead, it became very pleasant that all of
those funny little symbols went away and were replaced by the color of the word which
was, to me, a much gentler way of indicating functionality.

I get interminable criticism from people who are color blind. They were really annoyed
that T was trying to rule them out of being programmers, but somebody finally came up
with a character set distinction instead of a color distinction, which is a pleasant way of
doing it also.

The key is the four-bit tag in each word, which gives you 16 things that we're to do, and
the compiler can determine immediately what’s intended instead of having to infer it from
context.

Second- and third-generation languages embraced minimalism, for example with meta-
circular bootstrapping implementations. Forth is a great example of minimalism in terms
of language concepts and the amount of hardware support required. Was this a feature of
the times, or was it something you developed over time?

Chuck: No, that was a deliberate design goal to have as small a kernel as possible. Pre-
define as few words as necessary and then let the programmer add words as he sees fit.

Download at Boykma.Com

The prime reason for that was portability. At the time, there were dozens of minicomput-
ers and then there became dozens of microcomputers. And I personally had to put Forth
on lots of them.

I wanted to make it as easy as possible. What happens really is there might be a kernel with
100 words or so that is just enough to generate a—I'll call it an operating system, but it’s not
quite—that has another couple hundred words. Then you're ready to do an application.

I would provide the first two stages and then let the application programmers do the third,
and I was usually the application programmer, too. I defined the words I knew were going
to be necessary. The first hundred words would be in machine language probably or
assembler or at least be dealing directly with the particular platform. The second two or
three hundred words would be high-level words, to minimize machine dependence in the
lower, previously defined level. Then the application would be almost completely machine
independent, and it was easy to port things from one minicomputer to another.

Were you able to port things easily above that second stage?

Chuck: Absolutely. I would have a text editor, for instance, that I used to edit the source
code. It would usually just transfer over without any changes.

Is this the source of the rumor that every time you ran across a new machine, you
immediately started to port Forth to it?

Chuck: Yes. In fact, it was the easiest path to understanding how the machine worked,
what its special features were based on how easy it was to implement the standard pack-
age of Forth words.

How did you invent indirect-threaded code?

Chuck: Indirect-threaded code is a somewhat subtle concept. Each Forth word has an
entry in a dictionary. In direct-threaded code, each entry points to code to be executed
when that word is encountered. Indirect-threaded code points to a location that contains
the address of that code. This allows information besides the address to be accessed—tor
instance, the value of a variable.

This was perhaps the most compact representation of words. It has been shown to be
equivalent to both direct-threaded and subroutine-threaded code. Of course these con-
cepts and terminology were unknown in 1970. But it seemed to me the most natural way
to implement a wide variety of kinds of words.

How will Forth influence future computer systems?

Chuck: That has already happened. I've been working on microprocessors optimized for
Forth for 25 years, most recently a multicore chip whose cores are Forth computers.

What does Forth provide? As a simple language, it allows a simple computer: 256 words of
local memory; 2 push-down stacks; 32 instructions; asynchronous operation; easy com-
munication with neighbors. Small and low-power.

Download at Boykma.Com

FORTH

63

64

CHAPTER FOUR

Forth encourages highly factored programs. Such are well-suited to parallel processing, as
required by a multicore chip. Many simple programs encourage thoughtful design of each.
And requiring perhaps only 1% the code that would otherwise be written.

Whenever I hear people boasting of millions of lines of code, I know they have greviously
misunderstood their problem. There are no contemporary problems requiring millions of
lines of code. Instead there are careless programmers, bad managers, or impossible
requirements for compatibility.

Using Forth to program many small computers is an excellent strategy. Other languages
just don’t have the modularity or flexibility. And as computers get smaller and networks
of them are cooperating (smart dust?), this will be the environment of the future.

This sounds like one major idea of Unix: multiple programs, each doing just one thing,
that interact. Is that still the best design today? Instead of multiple programs on one
computer, might we have multiple programs across a network?

Chuck: The notion of multithreaded code, as implemented by Unix and other OSes, was a
precursor to parallel processing. But there are important differences.

A large computer can afford the considerable overhead ordinarily required for multi-
threading. After all, a huge operating system already exists. But for parallel processing,
almost always the more computers, the better.

With fixed resources, more computers mean smaller computers. And small computers
cannot afford the overhead common to large ones.

Small computers will be networked, on chip, between chips and across RF links. A small
computer has small memory. Nowhere is there room for an operating system. The com-
puters must be autonomous, with a self-contained ability to communicate. So communi-
cation must be simple—no elaborate protocol. Software must be compact and efficient. An
ideal application for Forth.

Those systems requiring millions of lines of code will become irrelevant. They are a conse-
quence of large, central computers. Distributed computation needs a different approach.

A language designed to support bulky, syntactical code encourages programmers to write
big programs. They tend to take satisfaction, and be rewarded, for such. There is no pres-
sure to seek compactness.

Although the code generated by a syntactic language might be small, it usually isn’t. To
implement the generalities implied by the syntax leads to awkward, inetficient object
code. This is unsuitable for a small computer. A well-designed language has a one-one
correlation between source code and object code. It’s obvious to the programmer what
code will be generated from his source. This provides its own satisfaction, is efficient, and
reduces the need for documentation.

Download at Boykma.Com

Forth was designed partly to be compact in both source and binary output, and is
popular among embedded developers for that reason, but programmers in many other
domains have reasons to choose other languages. Are there aspects of the language
design that add only overhead to the source or the output?

Chuck: Forth is indeed compact. One reason is that it has little syntax.

Other languages seem to have deliberately added syntax, which provides redundancy and
offers opportunity for syntax checking and thus error detection.

Forth provides little opportunity for error detection due to its lack of redundancy. This
contributes to more compact source code.

My experience with other languages has been that most errors are in the syntax. Design-
ers seem to create opportunity for programmer error that can be detected by the compiler.
This does not seem productive. It just adds to the hassle of writing correct code.

An example of this is type checking. Assigning types to various numbers allows errors to
be detected. An unintended consequence is that programmers must work to convert
types, and sometimes work to evade type checking in order to do what they want.

Another consequence of syntax is that it must accommodate all intended applications.
This makes it more elaborate. Forth is an extensible language. The programmer can create
structures that are just as efficient as those provided by the compiler. So all capabilities do
not have to be anticipated and provided for.

A characteristic of Forth is its use of postfix operators. This simplifies the compiler and
offers a one-one translation of source code to object code. The programmer’s understand-
ing of his code is enhanced and the resulting compiled code is more compact.

Proponents of many recent programming languages (notably Python and Ruby) cite
readability as a key benefit. Is Forth easy to study and maintain in relation to those? What
can Forth teach other programming languages in terms of readability?

Chuck: Computer languages all claim to be readable. They aren’t. Perhaps it seems so to
one who knows the language, but a novice is always bewildered.

The problem is the arcane, arbitrary, and cryptic syntax. All the parentheses, ampersands,
etc. You try to learn why it’s there and eventually conclude there’s no good reason. But
you still have to follow the rules.

And you can’t speak the language. You’d have to pronounce the punctuation like Victor
Borgia.

Forth alleviates this problem by minimizing the syntax. Its cryptic symbols @ and ! are pro-
nounced “fetch” and “store.” They are symbols because they occur so frequently.

Download at Boykma.Com FORTH

65

The programmer is encouraged to use natural-language words. These are strung together
without punctuation. With good choice of words, you can construct reasonable sentences.
In fact, poems have been written in Forth.

Another advantage is postfix notation. A phrase like “6 inches” can apply the operator
“inches” to the parameter 6, in a very natural manner. Quite readable.

On the other hand, the programmer’s job is to develop a vocabulary that describes the
problem. This vocabulary can get to be quite large. A reader has to know it to find the pro-
gram readable. And the programmer must work to define helpful words.

All in all, it takes effort to read a program. In any language.

How do you define success in terms of your work?

Chuck: An elegant solution.

One doesn’t write programs in Forth. Forth is the program. One adds words to construct a
vocabulary that addresses the problem. It is obvious when the right words have been
defined, for then you can interactively solve whatever aspect of the problem is relevant.

For example, I might define words that describe a circuit. I'll want to add that circuit to a
chip, display the layout, verify the design rules, run a simulation. The words that do these
things form the application. If they are well chosen and provide a compact, efficient
toolset, then I've been successful.

Where did you learn to write compilers? Was this something everybody at the time had to
do?

Chuck: Well, I went to Stanford around ‘60, and there was a group of grad students writ-
ing an ALGOL compiler—a version for the Burroughs 5500. It was only three or four of
them, I think, but I was impressed out of my mind that three or four guys could sit down
and write a compiler.

Isort of said, “Well, if they can do it, I can do it,” and I just did. It isn’t that hard. There
was a mystique about compilers at the time.

There still is.

Chuck: Yeah, but less so. You get these new languages that pop up from time to time, and
Idon’t know if they're interpreted or compiled, but well, hacker-type people are willing to
do it anyway.

The operating system is another concept that is curious. Operating systems are dauntingly
complex and totally unnecessary. It’s a brilliant thing that Bill Gates has done in selling
the world on the notion of operating systems. It’s probably the greatest con game the
world has ever seen.

66 CHAPTER FOUR Download at Boykma.Com

An operating system does absolutely nothing for you. As long as you had something—a
subroutine called disk driver, a subroutine called some kind of communication support, in
the modern world, it doesn’t do anything else. In fact, Windows spends a lot of time with
overlays and disk management all stuff like that which are irrelevant. You’ve got gigabyte
disks; you’ve got megabyte RAMs. The world has changed in a way that renders the oper-
ating system unnecessary.

What about device support?

Chuck: You have a subroutine for each device. That’s a library, not an operating system.
Call the ones you need or load the ones you need.

How do you resume programming after a short hiatus?

Chuck: I don’t find a short coding hiatus at all troublesome. I'm intensely focused on the
problem and dream about it all night. I think that’s a characteristic of Forth: full effort over
a short period of time (days) to solve a problem. It helps that Forth applications are natu-
rally factored into subprojects. Most Forth code is simple and easy to reread. When I do
really tricky things, I comment them well. Good comments help re-enter a problem, but
it’s always necessary to read and understand the code.

What’s the biggest mistake you’ve made with regard to design or programming? What did
you learn from it?

Chuck: Some 20 years ago I wanted to develop a tool to design VLSI chips. I didn’t have a
Forth for my new PC, so I thought I'd try a different approach: machine language. Not
assembler language, but actually typing the hex instructions.

I built up the code as I would in Forth, with many simple words that interacted hierarchi-
cally. It worked. I used it for 10 years. But it was difficult to maintain and document.
Eventually I recoded it in Forth and it became smaller and simpler.

My conclusion was that Forth is more efficient than machine language. Partly because of
its interactivity and partly because of its syntax. One nice aspect of Forth code is that num-
bers can be documented by the expression used to calculate them.

Hardware

How should people see the hardware they develop on: as a resource or as a limit? If you
think of hardware as a resource, you might want to optimize the code and exploit every
hardware feature; if you see it as a limit, you are probably going to write code with the
idea that your code will run better on a new and more powerful version of the hardware,
and that’s not a problem because hardware evolves rapidly.

Chuck: A very perceptive observation that software necessarily targets its hardware. Soft-
ware for the PC certainly anticipates faster computers and can afford to be sloppy.

Download at Boykma.Com

FORTH

67

But for embedded systems, the software expects the system to be stable for the life of the
project. And not a lot of software is migrated from one project to another. So here the
hardware is a constraint, though not a limit. Whereas, for PCs, hardware is resource that
will grow.

The move to parallel processing promises to change this. Applications that cannot exploit
multiple computers will become limited as single computers stop getting faster. Rewriting
legacy software to optimize parallel processing is impractical. And hoping that smart com-
pilers will save the day is just wishful thinking.

What is the root of the concurrency problem?

Chuck: The root of the concurrency problem is speed. A computer must do many things
in an application. These can be done on a single processor with multitasking. Or they can
be done simultaneously with multiple processors.

The latter is much faster and contemporary software needs that speed.

Is the solution in hardware, software, or some combination?

Chuck: It’s not hard to glue multiple processors together. So the hardware exists. If soft-
ware is programmed to take advantage of this the problem is solved. However, if the soft-
ware can be reprogrammed, it can be made so efficient that multiprocessors are not
needed. The problem is to use multiprocessors without changing legacy software. This is
the intelligent compiler approach that has never been achieved.

I'm amazed that software written in the 1970s hasn’t/can’t be rewritten. One reason
might be that in those days software was exciting; things being done for the first time;
programmers working 18-hour days for the joy of it. Now programming is a 9-5 job as
part of a team working to a schedule; not much fun.

So they add another layer of software to avoid rewriting the old software. At least that’s
more fun than recoding a stupid word processor.

We have access to a big computational power in common computers, but how much
actual computing (that is, calculating) are these systems doing? And how much are they
just moving and formatting data?

Chuck: You are right. Most computer activity is moving data, not calculating. Not just
moving data, but compressing, encrypting, scrambling. At high data rates, this must be
done with circuitry so one wonders why a computer is needed at all.

Can we learn something from this? Should we build hardware in a different way?

Don Knuth launched a challenge: check what happens inside a computer during one
second of time. He said that what we would discover could change a lot of things.

Chuck: My computer chips recognize this by having a simple, slow multiply. It isn't used
very often. Passing data between cores and accessing memory are the important features.

68 CHAPTER FOUR Download at Boykma.Com

On one hand you have a language that really enables people to develop their own
vocabularies and not necessarily think about the hardware presentation. On the other
hand, you have a very small kernel that’s very much tied to that hardware. It’s interesting
how Forth can bridge the gap between the two. On some of these machines, is it true that
you have no operating system besides your Forth kernel?

Chuck: No, Forth is really standalone. Everything that needs to exist is in the kernel.

But it abstracts away that hardware for people who write programs in Forth.

Chuck: Right.

The Lisp Machine did something similar, but never really was popular. Forth quietly has
done that job.

Chuck: Well, Lisp did not address I/0. In fact, C did not address I/O and because it didn't,
it needed an operating system. Forth addressed I/0O from the very beginning. I don’t
believe in the most common denominator. I think that if you go to a new machine, the
only reason it’s a new machine is because it’s different in some way and you want to take
advantage of those differences. So, you want to be there at the input-output level so you
can do that.

Kernighan and Ritchie might argue for C that they wanted a least common factor to make
porting easier. Yet you found it easier to port if you didn’t take that approach.

Chuck: I would have standard ways of doing that. I would have a word—I think it was
fetchp maybe—that would fetch 8 bits from a port. That would be defined ditferently on
different computers, but it would be the same function at the stack.

In one sense then, Forth is equivalent to C plus the standard 1/0 library.

Chuck: Yeah, but I worked with the Standard FORTRAN Library in the early days, and it
was awful. It just had the wrong words. It was extremely expensive and bulky. It was so
easy to define half a dozen instructions to perform in I/0 operation that you didn’t need
the overhead of a predefined protocol.

Did you find yourself working around that a lot?

Chuck: In FORTRAN, yeah. When you're dealing with, say, Windows, there’s nothing
you can do. They won't let you have access to the I/0. I have stayed away from Windows
most deliberately, but even without Windows, the Pentium was the most difficult
machine to put Forth on.

It had too many instructions. And it had too many hardware features like the lookaside
buffers and the different kinds of caching you really couldn’t ignore. You had to wade
your way through, and the initialization code necessary to get Forth running was the most
difficult and the most bulky.

Even if it only had to be executed once, I spent most of my time trying to figure out how to
do it correctly. We had Forth running standalone on a Pentium, so it was worth the trouble.

Download at Boykma.Com FORTH

69

70

CHAPTER FOUR

The process extended over 10 years probably, partly chasing the changes in the hardware
Intel was making.

You mentioned that Forth really supports asynchronous operation. In what sense do you
mean asynchronous operation?

Chuck: Well, there’s several senses. Forth has always had a multiprogramming ability, a
multithreading ability called Cooperative.

We had a word called pause. If you had a task and it came to a place where it didn’t have
anything to do immediately, it would say pause. A round-robin scheduler would assign the
computer to the next task in the loop.

If you didn’t say pause, you could monopolize the computer completely, but that would
never be the case, because this was a dedicated computer. It was running a single applica-
tion and all the tasks were friendly.

I guess that was in the old days when all of the tasks were friendly. That’s one kind of
asynchronism that these tasks could run, do their own thing without ever having to syn-
chronize. One of the features, again, of Forth is that that word pause could be buried in
lower-level words. Every time you tried to read or write disk, the word pause would be
executed for you, because the disk team knew that it was going to have to wait for the
operation to complete.

In the new chips, the new multicore chips that I'm developing, we're taking that same
philosophy. Each computer is running independently and if you have a task on your com-
puter, and another task on the neighbor, they’re both running simultaneously but they're
communicating with each other. That’s the equivalent of what the tasks would’ve been
doing in a threaded computer.

Forth just factors very nicely into those independent tasks. In fact, in the case of the multi-
core computer, I can use not exactly the same programs, but I can factor the programs in
the same way to make them run in parallel.

When you had the cooperative multithreading, did each thread of execution have its own
stack, and you switched between them?

Chuck: When you did a task switch, sometimes all you needed to do, depending on the
computer, was save the word on top of the stack and then switch the stack pointer. Some-
times you actually had to copy out the stack and load the new one, but in that case, I
would make it a point to have a very shallow stack.

Did you deliberately limit the stack depth?

Chuck: Yes. Initially, the stacks were arbitrarily long. The first chip I designed had a stack
that was 256 deep because I thought that was small. One of the chips I designed had a
stack 4 deep. I've settled now on about 8 or 10 as a good stack depth, so my minimalism
has gotten stricter over time.

Download at Boykma.Com

I would’ve expected it to go the other way.

Chuck: Well, in my VLSI design application, I do have a case where I'm recursively fol-
lowing traces across the chip, in which case, I have to set the stack depths to about 4,000.
To do that might require a different kind of stack, a software-implemented stack. But, in
fact, on the Pentium it can be a hardware stack.

Application Design

You brought up the idea that Forth is an ideal language for many small computers
networked together—smart dust, for example. For which kinds of applications do you
think these small computers are the most appropriate?

Chuck: Communication certainly, sensing certainly. But I'm just beginning to learn how
independent computers can cooperate to achieve a greater task.

The multicore computers we have are brutally small. They have 64 words of memory.
Well, to put it differently, they have 128 words of memory: 64 RAM, 64 ROM. Each word
can hold up to four instructions. You might end up with 512 instructions in a given com-
puter, period, so the task has to be rather simple. Now how do you take a task like the
TCP/IP stack and factor it amongst several of these computers in such a way that you can
perform the operation without any computer needing more than 512 instructions? That’s
a beautiful design problem, and one that I'm just approaching now.

I think that’s true of almost all applications. It’s much easier to do an application if it’s bro-
ken up into independent pieces as it is trying to do it in serial on a single processor. I think
that’s true of video generation. Certainly I think it’s true of compressing and uncompress-
ing images. But I'm just learning how to do that. We’ve got other people here in the com-
pany that are also learning and having a good time at it.

Is there any field of endeavor where this is not appropriate?

Chuck: Legacy software, certainly. I'm really worried about legacy software, but as soon
as you're willing to rethink a problem, I think it is more natural to think of it this way. I
think it corresponds more closely to the way we think the brain works with Minsky’s
independent agents. An agent to me is a small core. It may be that consciousness arises in
the communication between these, not in the operation of any one of them.

Legacy software is an unappreciated but serious problem. It will only get worse—not only
in banking but in aerospace and other technical industries. The problem is the millions of
lines of code. Those could be recoded, say in thousands of lines of Forth. There’s no point
in machine translation, which would only make the code bigger. But there’s no way that
code could be validated. The cost and risk would be horrendous. Legacy code may be the
downfall of our civilization.

Download at Boykma.Com FORTH

71

It sounds like you're betting that in the next 10 to 20 years we’ll see more and more
software arise from the loose joining of many small parts.

Chuck: Oh, yes. I'm certain that’s the case. RF communication is so nice. They talk about
micro agents inside your body that are fixing things and sensing things, and these agents
can only communicate via RF or maybe acoustic.

They can’t do much. They’re only a few molecules. So this has got to be how the world
goes. It’s the way our human society is organized. We have six and half billion indepen-
dent agents out there cooperating.

Choosing words poorly can lead to poorly designed, poorly maintainable applications.
Does building a larger application out of dozens or hundreds of small words lead to
jargon? How do you avoid that?

Chuck: Well, you really can’t. I find myself picking words badly. If you do that, you can
confuse yourself. I know in one application, I had this word—I forget what it was now—
but I had defined and then I had modified it, and it ended up meaning the opposite of
what it said.

It was like you had a word called right that makes things go to the left. That was hideously
confusing. I fought it for a while and finally renamed the word because it was just impos-
sible to understand the program with that word throwing so much noise into your cogni-
tion. I like to use English words, not abbreviations. I like to spell them out. On the other
hand, I like them to be short. You run out of short meaningful English words after a while
and you’ve got to do something else. I hate prefixes—a crude way to try to create
namespaces so you can use the same old words over and over. They just look to me like a
cop out. It’s an easy way to distinguish words, but you should’ve been smarter.

Very often Forth applications will have distinct vocabularies where you can reuse words.
In this context, the word does this; in that context, it does something else. In the case of
my VLSI design, all of this idealism failed. I needed at least a thousand words, and they're
not English words; they're signal names or something, and I quickly had to revert to defi-
nitions and weirdly spelled words and prefixes and all of that stuff. It isn’t all that read-
able. But on the other hand, it’s full of words like nand and nor and xor for the various gates
that are involved. Where possible, I use the words.

Now, I see other people writing Forth; I don’t want to pretend to be the only Forth pro-
grammer. Some of them do a very good job of coming up with names for things; others do
a very bad job. Some come up with a very readable syntax, and others don’t think that
that’s important. Some come up with very short definitions of words, and some have
words that are a page long. There are no rules; there’s only stylistic conventions.

Also, the key difference between Forth and C and Prolog and ALGOL and FORTRAN, the
conventional languages tried to anticipate all possible structures and syntax and build it
into the language in the first place. That has led to some very clumsy languages. I think C
is a clumsy language with its brackets and braces and colons and semicolons and all of
that. Forth eliminated all of that.

72 CHAPTER FOUR Download at Boykma.Com

I didn’t have to solve the general problem. I just had to provide a tool that someone else
could use to solve whatever problem they encountered. The ability to do anything and not
the ability to do everything.

Should microprocessors include source code so that they can be fixed even decades
later?

Chuck: You're right, including the source with microcomputers will document them
nicely. Forth is compact, which facilitates that. But the next step is to include the com-
piler and editor so that the microcomputer code can be examined and changed without
involving another computer/operating system that may have been lost. colorForth is my
attempt to do that. A few K of source and/or object code is all that’s required. That can
easily be stored on flash memory and be usable in the far future.

What is the link between the design of a language and the design of a software written
with that language?

Chuck: A language determines its use. This is true of human-human languages. Witness
the difference between Romance (French, Italian), Western (English, German, Russian)
and Eastern (Arabic, Chinese) languages. They affect their cultures and their worldview.
They affect what is said and how it’s said. Of these, English is particularly terse and
increasingly popular.

So too with human-computer languages. The first languages (COBOL, FORTRAN) were
too verbose. Later languages (Algol, C) had excessive syntax. These languages necessarily
led to large, clumsy descriptions of algorithms. They could express anything, but do it
badly.

Forth addresses these issues. It is relatively syntax-free. It encourages compact, efficient
descriptions. It minimizes the need for comments, which tend to be inaccurate and distract
attention from the code itself.

Forth also has a simple, efficient subroutine call. In C, a subroutine call requires expensive
setup and recovery. This discourages its use. And encourages elaborate parameter sets that
amortize the cost of the call, but lead to large, complex subroutines.

Efficiency allows Forth applications to be very highly factored, into many, small subroutines.
And they typically are. My personal style is one-line definitions—hundreds of small sub-
routines. In such a case, the names assigned this code become important, both as a
mnemonic device and as a way to achieve readability. Readable code requires less
documentation.

The lack of syntax allows Forth a corresponding lack of discipline. This, to me, allows indi-
vidual creativity and some very pleasant code. Others view it as a disadvantage, fearing
management loss of control and lack of standardization. I think that’s more of a manage-
ment failure than the fault of the language.

Download at Boykma.Com FORTH

73

T4

CHAPTER FOUR

You said “Most errors are in syntax.” How do you avoid the other types of errors in Forth
programs, such as logic errors, maintainability errors, and bad style decisions?

Chuck: Well, the major error in Forth has to do with stack management. Typically, you
leave something on the stack inadvertently and it'll trip you up later. We have a stack com-
ment associated with words, which is very important. It tells you what is on the stack upon
entry and what is on the stack upon exit. But that’s only a comment. You can’t trust it.

Some people did actually execute those and use them to do verification and stack behavior.

Basically, the solution is in the factoring. If you have a word whose definition is one line
long, you can read through it thinking how the stack acts and conclude at the end that it’s
correct. You can test it and see if it works the way you thought it did, but even so, you're
going to get caught up in stack errors. The words dup and drop are ubiquitous and have to
be used correctly. The ability to execute words out of context just by putting their input
parameters and looking at their output parameters is hugely important. Again, when
you're working bottom-up, you know that all of the words you’'ve already defined work
correctly because you tested them.

Also, there are only a few conditionals in Forth. There’s an if-else-then construction, a
begin-while construct. My philosophy, which I regularly try to teach, is that you minimize
the number of conditionals in your program. Rather than having a word that tests some-
thing and either does this or that, you have two words: one that does this and one that
does that, and you use the right one.

Now it doesn’t work in C because the calling sequences are so expensive that they tend to
have parameters that let the same routine do different things based upon the way it’s
called. That’s what leads to all of the bugs and complications in legacy software.

In trying to work around deficiencies of the implementation?

Chuck: Yeah. Loops are unavoidable. Loops can be very, very nice. But a Forth loop, at
least a colorForth loop, is a very simple one with a single entry and a single exit.

What advice would you give a novice to make programming more pleasant and effective?

Chuck: Well, surely not to your surprise, I would say you should learn to write Forth
code. Even if you aren’t going to be writing Forth code professionally, exposure to it will
teach you some of these lessons and give you a better perspective on whatever language
you use. If I were writing a C program, I have written almost none, but I would write it in
the style of Forth with a lot of simple subroutines. Even if there were a cost involved
there, I think it would be worth it in maintainability.

The other thing is keep it simple. The inevitable trend in designing an aircraft or in writing
an application, even a word processor, is to add features and add features and add features
until the cost becomes unsupportable. It would be better to have half a dozen word pro-
cessors that would focus on different markets. Using Word to compose an email is silly;

Download at Boykma.Com

99% of all of the facilities available are unnecessary. You ought to have an email editor.
There used to be such, but the trend seems to be away from that. It’s not clear to me why.

Keep it simple. If you're encountering an application, if you're on part of a design team,
try to persuade other people to keep it simple. Don’t anticipate. Don’t solve a problem that
you think might occur in the future. Solve the problem you’ve got. Anticipating is very
inefficient. You can anticipate 10 things happening, of which only one will, so you’'ve
wasted a lot of effort.

How do you recognize simplicity?

Chuck: There’s I think a budding science of complexity, and one of their tenets is how to
measure complexity. The description that I like, and I don’t know if there’s any other one,
is that the shortest description or if you have two concepts, the one with the shorter
description is the simpler. If you can come up with a shorter definition of something, you
come up with a simpler definition.

But that fails in a subtle way that any kind of description depends on the context. If you
can write a very short subroutine in C, you might say this is very simple, but you're rely-
ing upon the existence of the C compiler and the operating system and the computer
that’s going to execute it all. So really, you don’t have a simple thing; you have a pretty
complex thing when you consider the wider context.

I think it’s like beauty. You can’t define it, but you can recognize it when you see it—
simple is small.

How does teamwork affect programming?

Chuck: Teamwork—much overrated. The first job of a team is to partition the problem
into relatively independent parts. Assign each part to an individual. The team leader is
responsible for seeing that the parts come together.

Sometimes two people can work together. Talking about a problem can clarify it. But too
much communication becomes an end in itself. Group thinking does not facilitate creativ-
ity. And when several people work together, inevitably one does the work.

Is this valid for every type of project? If you have to write something as feature-rich as
OpenOffice.org...it sounds pretty complex, no?

Chuck: Something like OpenOffice.org would be factored into subprojects, each pro-
grammed by an individual with enough communication to assure compatibility.

How do you recognize a good programmer?

Chuck: A good programmer writes good code quickly. Good code is correct, compact, and
readable. “Quickly” means hours to days.

A bad programmer will want to talk about the problem, will waste time planning instead
of writing, and will make a career out of writing and debugging the code.

Download at Boykma.Com FORTH

75

What is your opinion of compilers? Do you think they mask the real skills of
programmers?

Chuck: Compilers are probably the worst code ever written. They are written by someone
who has never written a compiler before and will never do so again.

The more elaborate the language, the more complex, bug-ridden, and unusable is the
compiler. But a simple compiler for a simple language is an essential tool—if only for
documentation.

More important than the compiler is the editor. The wide variety of editors allows each
programmer to select his own, to the great detriment of collaborative efforts. This fosters
the cottage industry of translating from one to another.

Another failing of compiler writers is the compulsion to use every special character on the
keyboard. Thus keyboards can never become smaller and simpler. And source code
becomes impenetrable.

But the skills of a programmer are independent of these tools. He can quickly master their
foibles and produce good code.

How should software be documented?

Chuck: I value comments much less than others do. Several reasons:

¢ If comments are terse, they are often cryptic. Then you have to guess what they mean.

e If comments are verbose, they overwhelm the code they’re embedded in and trying to
explain. It’s hard to find and relate code to comment.

e Comments are often badly written. Programmers aren’t known for their literary skills,
especially if English is not their native language. Jargon and grammatical errors often
make them unreadable.

e Most importantly, comments are often inaccurate. Code may change without com-
ments being updated. Although code may be critically reviewed, comments rarely are.
An inaccurate comment causes more trouble than no comment. The reader must judge
whether the comment or the code is correct.

Comments are often misguided. They should explain the purpose of the code, not the
code itself. To paraphrase the code is unhelpful. And if it is inaccurate, downright mislead-
ing. Comments should explain why the code is present, what it is intended to accomplish,
and any tricks employed in accomplishing it.

colorForth factors comments into a shadow block. This removes them from the code itself,
making that code more readable. Yet they are instantly available for reading or updating.
It also limits the size of comments to the size of the code.

76 CHAPTER FOUR Download at Boykma.Com

Comments do not substitute for proper documentation. A document must be written that
explains in prose the code module of interest. It should expand greatly the comments and
concentrate on literate and complete explanation.

Of course, this is rarely done, is often unaffordable, and is easily lost since it is separate
from the code.

Quoting from http://www.colorforth.com/HOPL.html:

“The issue of patenting Forth was discussed at length. But since software patents were
controversial and might involve the Supreme Court, NRAO declined to pursue the matter.
Whereupon, rights reverted to me. | don't think ideas should be patentable. Hindsight
agrees that Forth’s only chance lay in the public domain. Where it has flourished.”

Software patents are still controversial today. Is your opinion about patents still the
same?

Chuck: I've never been in favor of software patents. It’s too much like patenting an idea.
And patenting a language/protocol is especially disturbing. A language will only be suc-
cesstul if it’s used. Anything that discourages use is foolish.

Do you think that patenting a technology prevents or limits its diffusion?

Chuck: It is difficult to market software, which is easy to copy. Companies go to great
lengths to protect their product, sometimes making it unusable in the process. My answer
to that problem is to sell hardware and give away the software. Hardware is difficult to
copy and becomes more valuable as software is developed for it.

Patents are one way of addressing these issues. They have proven a wonderful boon to
innovation. But there’s a delicate balance required to discourage frivolous patents and
maintain consistency with prior art/patents. And there are huge costs associated with
granting and enforcing them. Recent proposals to reform patent law threaten to freeze out
the individual inventor in favor of large companies. Which would be tragic.

Download at Boykma.Com

FORTH

77

http://www.colorforth.com/HOPL.html

Download at Boykma.Com

CHAPTER FIVE

BASIC

In 1963, Thomas Kurtz and John Kemeny invented BASIC, a general-purpose lan-
guagde intended to teach beginners to program as well as to allow experienced
users to write useful programs. Their original goals included abstracting away
details of the hardware. The language spread widely after the introduction of
microcomputers in the 70s; many personal computers included custom variants.
Though the language has moved beyond line numbers and GOTO statements
through Microsoft’s Visual Basic and Kurtz’s BASIC, multiple generations of pro-
grammers learned the joy of programming from a language that encouraged exper-
imentation and rewarded curiosity.

Download at Boykma.Com

79

The Goals Behind BASIC

What is the best way to learn to program?

Tom Kurtz: Beginning programmers should not have to wade through manuals. Most
manuals are far too wordy to retain the attention of new students. Simple coding assign-
ments and easy access to easy-to-use implementations are required, and many examples.

Some educators prefer to teach a language in which programmers need to develop a lot
of experience before applying it. You have chosen instead to create a language that any
level of programmer can use quickly, where they can improve their knowledge by
experience.

Tom: Yes. Once you have learned to program, new computer languages are easy to learn.
The first is the hardest. Unless a language is particularly obtuse, the new language will be
but a short step from the languages already known. An analogy with spoken languages
(which are much more difficult to learn): once you learn your first Romance language, the
second is much simpler. First of all, the grammar is similar, there are many words the
same, and the syntax is fairly simple (i.e., whether the verb is in the middle, as in English,
or at the end).

The simpler the first language, the more easily the average student will learn it.

Did this evolutionary approach guide your decision to create BASIC?

Tom: When we were deciding to develop BASIC (John Kemeny and I back in 1962 or so),
I considered attempting to develop simplified subsets of either FORTRAN or Algol. It didn't
work. Most programming languages contain obscure grammatical rules that act as a bar-
rier for the beginning student. We tried to remove all such from BASIC.

Several of the considerations that went into the design of BASIC were:

¢ One line, one statement.

We couldn’t use a period to end a statement, as JOSS did (I believe.) And the Algol
convention of a semicolon made no sense to us, as did the FORTRAN Continuation (C).

¢ Line numbers are GOTO targets.

We had to have line numbers since this was long before the days of WYSIWYG. Invent-
ing a new concept of “statement label” didn’t seem like a good idea to us. (Later, when
creating and editing programs became easier, we allowed the user to not use line numbers,
as long as he didn’t use GOTO statements; by that time, BASIC was fully structured.)

e All arithmetic is floating point.

One of the most difficult concepts for a beginner to learn is why the distinction
between type integer and type floating. Almost all the programming languages at the
time bowed to the architecture of the most computer hardware, which included float-
ing point for engineering calculations and integer for efficiency.

80 CHAPTER FIVE Download at Boykma.Com

In handling all arithmetic in floating point, we protected the user from numeric typing.
We did have to do some complicated stuff internally when an integer value was
required (as in an array subscript) and the user provided a noninteger (as in 3.1). We
simply rounded in such cases.

We had similar problems with the difference between binary and decimal fractions. As
in the statement:

FOR I =1 TO 2 STEP 0.1
The decimal fraction 0.1 is an infinite repeating binary fraction. We had to use a fuzz

factor to determine the completion of the loop.

(Some of these binary-decimal considerations were not included in the original BASIC,
but were handled in the much more recent True BASIC.)

A number is a number (is a number).

No form requirements when entering a number in the code or in data statements. And
the PRINT statement produced answers in a default format. The FORMAT statement, or
its equivalent in other languages, is quite difficult to learn. And the beginning user

might wonder why would he have to learn it—he just wanted to get a simple answer!

Reasonable defaults.

If there are any complications for the “more advanced” user, they should not be visible to

the beginner. Admittedly, there were not many “advanced” features in the original
BASIC, but that idea was, and is, important.

The correctness of our approach was borne out by that fact that it took about an hour to teach

freshmen how to write simple programs in BASIC. Our training started out with four one-

hour lectures, then was reduced to three, then two, and finally to a couple of videotapes.

I once determined that an introductory computer science course could be taught using a

version of BASIC (not the original one, but one that included structured programming

constructs). The only thing you could not do was to introduce the student to the ideas of

pointers and allocated storage!

Another point: in the early days running a program required several steps: Compiling.
Linking and loading. Execution. We decided in BASIC that a// runs would combine these
steps so that the user wouldn’t even be aware of them.

At that time in the history of computing, most languages required a multiple-pass com-

piler, which might consume too much valuable computer time. Thus, we compiled once,

and executed many times. But small student programs were compiled and executed once

only. It did require us to develop a single-pass compiler, and go directly to execution if the

compilation stage was without errors.

Also, in reporting errors to the student, we stopped after five errors. I can recall FORTRAN

error printouts many pages in length detailing all the syntax errors in a program, usually

from omitting but one key punctuation at the beginning.

Download at Boykma.Com BASIC

81

82

CHAPTER FIVE

I've seen a BASIC manual from 1964. The subtitle is “the elementary algebraic language
designed for the Dartmouth Time Sharing system.” What’s an algebraic language?

Tom: Well, we were both mathematicians, so naturally there are certain things in the lan-
guage that look mathematical, for example raising numbers to power and things of this
sort, and then the functions that we added were mathematical, like sine and cosine,
because we were thinking of students doing calculus using BASIC programs. So there was
obviously a bias for numerical calculations in contrast to other languages that were devel-
oped at the time such as COBOL, which had a different focus.

What we did was look at FORTRAN at the time. Access to FORTRAN on any of the big IBM
computers was through the medium of 80-column punch cards. We were introducing a

computer in our campus through the use of teletype machines, which were used as input to
computers because they were compatible with phone lines, and we wanted the phone lines
to connect the terminals in various places on the campus to the central computer. So all that
was done using machinery designed originally for communication purposes such as teletype
communication, store and forward messages, and so on. So we did away with punch cards.

Second thing we wanted to do was to get away from the requirements that punch cards
imposed on users, which was that things had to be in certain columns on the card, and so
we wanted to be something more or less free form that somebody could type on a teletype
keyboard, which is just a standard “qwerty” keyboard, by the way, but only with upper-
case letters.

That’s how the form of the language appeared, something that was easy to type, in fact
originally it was space-independent. If you put spaces or you didn’t put spaces in what you
were typing it didn’t make any difference, because the language was designed originally so
that whatever you typed was always interpreted by the computer correctly, even if there
were spaces or no spaces. The reason for that was that some people, especially faculty
members, couldn’t type very well.

Space insensitivity made its way into some of the early personal computer versions of
BASIC, and that led to some quite funny anomalies about the interpretation of what the
person typed.

At Dartmouth there was no ambiguity at all. Only in much later years were spaces required
as the language evolved; the ending of a variable name had to be either a space or symbol.

One critic of BASIC said that it is a language designed to teach; as soon as you start writing
big programs, they become chaotic. What do you think?

Tom: This is a statement by somebody who hasn’t followed the development of BASIC
over the years. It’s not a baby language. With True BASIC I personally wrote 10,000- and
20,000-line programs, and it expands quite well, and I could write 30,000- or 40,000-line
programs and there wouldn’t be any problem, and it wouldn’t cause the runtime to
become inefficient, either.

The implementation of the language is separate from the design of the language.

Download at Boykma.Com

The design of the language is what the user has to type to get his work done. Once you
allow the possibility of libraries, then you can do anything you want. Then it’s a question
of the implementation of the language whether it supports programs of infinitely large
size, and True BASIC does.

This is different from other versions of BASIC. For example Microsoft BASIC and Visual
Basic, that is based on it, have some limitations. Other versions of BASIC that have been
floating around had other limitations, but those are in the implementation, not in the
design of the language.

Which features of True BASIC made it possible for you to write large programs?

Tom: There’s only one, the encapsulation, the module. We call our encapsulating struc-
tures modules.

That was actually standardized by the BASIC Committee, believe it or not, before they
went out of business. That happened in the early days of True BASIC. That feature was
added to the language standard, and that was about 1990 or so, 1991.

Modern computers have lots of memory and very fast chips and so there’s no problem
implementing that kind of stuff.

Even though you're back to two passes now in the compiler.

Tom: The linker is also written in True BASIC. It’s actually a crude version of True BASIC, or
a simplitied version of True BASIC. That’s compiled into this B code, like the Pascal P code.

To actually do the linking, you execute those B code instructions and there’s a very fast
interpreter that executes B code instructions. True BASIC, like the original BASIC, is com-
piled. The original BASIC was compiled into direct machine instructions, in one stage. In
True BASIC we compile into B code, and the B code is very simple, so the execution of B
code by a very fast C written loop, as it is now, was originally written for the DOS platforms.

That’s very fast. It’s not as fast as a language designed for speed, but it’s pretty darn fast. As
I said, there are two-address instructions in the B code, and so it’s very fast.

In the early days, interpretation didn’t slow things down because we had to do floating
point in software. We insisted that True BASIC and original Dartmouth BASIC always
dealt with double-position numbers, so that 99% of the users didn’t have to worry about
the precision. Now, of course, we use the IEEE standard that’s provided automatically by
all chips.

Do you think that the only difference between a language designed to teach and one
designed to build professional software is that the first is easier to learn?

Tom: No, it’s just the way that things developed. C came at an appropriate time and gave
access to the hardware. Now the current object-oriented languages that are around, what
they are teaching and what the professionals are doing, are derivatives of that environ-
ment, and so those languages are very hard to learn.

Download at Boykma.Com BASIC

83

84

CHAPTER FIVE

It means that people who use these derivative languages and are professionally trained
and are members of programming teams can put together much more sophisticated appli-
cations, such those used to do movies, sounds, and things of this sort. It is just much easier
to do that with an object-oriented language like Objective-C, but if that’s not your goal,
and you just want to write a large application program, you could use True BASIC, which
comes from Dartmouth BASIC.

What is the final goal of making a programming language easier to use? Will we ever be
able to build a language so simple that every computer user could write his own
programs?

Tom: No, a lot of the stuff we based on BASIC at Dartmouth can now be handled by other
applications such as spreadsheets. You can do quite complicated calculations with spread-
sheets. Furthermore, some of the mathematical applications we had in mind can now be
done using libraries of programs put out by professional societies.

The details of the programming language don’t really matter because you can learn new
languages in one day. It is easy to learn a new language if there is proper documentation.
I just don’t see what is the need of any new language alleged to be the perfect language.
Without a specific field in mind, you can’t have a good language; it’s a self-contradicting
idea! It’s like asking what is the best spoken and written language around the world? Is it
Italian? English? Or what is it? Could you define one? No, because all written and spoken
languages derive from how life is in that place where the language is used, so there is no
such thing as the perfect language. There is no perfect programming language, either.

Did you always intend that people would write a hundred very small programs and then
call themselves programmers?

Tom: That was our purpose, but the odd thing about it is, as the language grew, without
getting too complex, it became possible to write 10,000-line programs. That’s because we
kept things very simple. The whole idea, and you see, the trick in time sharing is that the
turnaround time is so quick, you don’t worry about optimizing the program. You worry
about optimizing person time.

I had an experience when I was writing a program for the MIT computer several years
before we invented BASIC. That was using a symbolic assembly program, SAP, for the
IBM 704. I tried to write this program and I tried to do everything that made sense, and I
used sense lights to optimize it, so I didn’t repeat calculations that weren’t necessary. I did
everything. Well, the damn thing didn’t work and it took me a month to find out that it
didn’t work, because I went down every two weeks. The turnaround time was two weeks.

I used I don’t know how many minutes or hours of computer time in the process. Then
the next year when FORTRAN came out, I switched and wrote a FORTRAN program and I
think I used five minutes of computer time, all told.

The whole business of optimizing and coding is absolutely wrong. You don’t do that. You
optimize only if you have to and you do it later. Higher-level languages optimize com-
puter time automatically because you make fewer errors.

Download at Boykma.Com

That’s a point | hear infrequently.

Tom: Computer scientists are kind of stupid in that respect. When we’re computer pro-
grammers we're concentrating on the intricate little fascinating details of programming and
we don’t take a broad engineering point of view about trying to optimize the total system.
You try to optimize the bits and bytes.

At any rate, that’s just an editorial comment. I'm not sure I could back it up.

Did the evolution of the hardware influence the evolution of the language?

Tom: No, because we thought the language was a protection from knowing about the
hardware. When we designed BASIC we made it hardware-independent; there is nothing
in the language or in the features that came in later that retlects the hardware.

This is not true with some of the early personal computer versions of BASIC, which were
based only in a loose sense on what we did at Dartmouth. For example, in one personal
computer version of BASIC they had a way to set or interrogate the content of a certain
memory location. In our own BASIC at Dartmouth, we never had that. So of course those
personal computer BASICs were terribly dependent on the hardware capabilities, and the
design of those personal computer languages reflected the hardware that was available to
them.

If you were talking to people who did Microsoft BASIC, they would say yes, the features
of the language were influenced by the hardware, but this didn’t happen at Dartmouth
with the original original BASIC.

You chose to perform all arithmetic as floating point to make things easier for the user.
What is your opinion on the way modern programming languages handle numbers?
Should we move to an exact form of representation using arbitrary-precision numbers,
where you consider them as a sort of “array of digits”?

Tom: There are lots of ways to represent numbers. It is true that most languages at that
time, and modern languages as well, reflect the availability of the type of number repre-
sentations that are available on today’s hardware.

For example, if you program in C today, there are number types that correspond to the
numeric representation available on hardware, such as single-precision floating point,
double-precision floating point, single-precision integer, double-precision integer, etc.
Those are all aspects of the C language because it was designed to get at the hardware, so
they have to provide access to whatever the number representations are in the computer.

Now, what numbers can be represented in computers? Well, in a fixed-length number of
binary digits, binary bits—with which most computers work—are at least a finite number
of decimal digits, you have a limitation on the type and numbers you can represent, and
that’s well known to lead to certain types of rounding errors.

Download at Boykma.Com BASIC

85

Some languages provide access to an unlimited precision, like 300 decimal digits, for
example, but they do that with software by representing very large numbers as potentially
infinite arrays of digits, but that’s all done by a software and consequently is very slow.

Our approach in BASIC was simply to say a number is a number, “3” is a number but also
“1.5” is a number. We haven’t bothered our students with that distinction; whatever they
put as a number, we tried our best to represent that number in the floating-point hard-
ware that was available on the machine.

One thing to say about that is when we were first considering which computers to get (of
course we ended up with the GE computer in 1964), we insisted that the computer had
floating-point hardware because we didn’t want to mess around with having to do soft-
ware arithmetic, and so that’s how we represented the numbers. Of course there is a cer-
tain imprecision in that, but that’s what you have to live with.

Were the GOTO and the GOSUB statements just a choice given the hardware at the time?
Should modern programming languages provide them as well?

Tom: I don’t think the hardware was the issue; it’s irrelevant.

Some structured languages required it, but that was in the old days, 20 or 30 years ago, so
I don’t really think that’s an issue.

The thing was important at the time because that was how people wrote programs for
computers in machine language and assembly language. When we did BASIC the idea of
structured programming had not yet surfaced; also, we patterned BASIC after FORTRAN,
and FORTRAN had the GOTO statement.

During the evolution of BASIC, what criteria did you use when considering new features
to add to the language?

Tom: Well, whatever was needed at the time—nothing very theoretical.

For example, one of the things we did after BASIC saw the light of day in early 1964 was
to add the ability to handle nonnumerical information, strings of character information.
We allowed character strings so that when people were writing programs such as to play
games, they could type “yes” or “no” instead of “1” or “0”. In the original BASIC, “1”
meant “yes,” and “0” meant “no,” but very soon we added the ability to handle strings of
characters. And that was just because it was needed.

Compiler Design

When you wrote the first version of BASIC, you were able to write a single-pass compiler
while everyone else was doing a multipass compiler. How did you do that?

Tom: It's very simple, if the design of the language is relatively simple. A lot of languages
are simple in that respect. Everything was known, and the only thing we had to put off to
what we call the pass and a half was filling in for forward transfers. That was the only
thing that really prevented a complete single-pass compiler.

86 CHAPTER FIVE Download at Boykma.Com

In the first hundred lines of a program you have a GOTO to something in the first
thousand lines. It’s a linking stage then.

Tom: That’s what we did. It was the equivalent of the linking list. Now, we didn’t actually
use a linked list structure in the assembly language of the computer we were working
with, but it was basically that. It might have been a little table that was set up with
addresses that are filled in later.

Were you able to parse and generate code at the same point then?

Tom: Yes. The other part about it was that the language was deliberately made simple for
the first go-round so that a single-pass parsing was possible. In other words, variable
names are very limited. A letter or a letter followed by a digit, and array names, one- and
two-dimensional arrays were always single letters followed by a left parenthesis. The pars-
ing was trivial. There was no table lookup and furthermore, what we did was to adopt a
simple strategy that a single letter, or a single letter followed by a digit, gives you what, 26
times 11 variable names. We preallocated space, fixed space for the locations for the val-
ues of those variables, if and when they had values.

We didn’t even use a symbol table.

Did you require variable declarations?

Tom: No, absolutely not. In fact, arrays always were single letters followed by left paren-
thesis, so that was in fact the declaration. Let me see if I can remember this correctly. If
you used an array, like you used a(3), then it was automatically an array from, oh, let’s
see, I think it was 0 to 10. Automatic default declarations, in other words, and starting at 0
because, being mathematicians, when you represent the coefficients of a polynomial, the
first one has a 0 subscript.

Did you find that simple to implement?

Tom: Trivial to implement. In fact, there are a lot of things in compiler writing that are
not too hard at all. Even later on when a more advanced version of BASIC was floating
around that used a symbol table lookup, but that’s not so hard, either.

It’s the optimizations that hurt.

Tom: We didn’t worry about optimization, because 99% of all the programs that were
being written by students and by faculty members at that time were little teeny, little triv-
ial things. It didn’t make any sense to optimize.

You've said that polymorphism implies runtime interpretation.

Tom: I believe that’s true, but nobody has challenged me on that statement because I
haven’t discussed it. Polymorphism means that you write a certain program and it behaves
differently depending on the data that it operates on. Now, if you don’t pull that in as a
source program, then at execution time that piece of program doesn’t know what it’s
doing until it actually starts executing, that’s runtime interpretation. Am I wrong on that?

Download at Boykma.Com BASIC

87

Consider Smalltalk, where arguably you have the source available. If you make really late
binding decisions, does that count as runtime binding?

Tom: That’s a tricky question. There’s early binding, late binding, and runtime binding.
It’s really tricky, and I imagine you can figure out ways of getting around this.

For example, suppose you're writing a sorting routine. If you're sorting numbers, the
comparison between which number is less and so on is obvious. If you're sorting character
strings, then it’s less obvious, because you don’t know whether you want ASCII sorting or
whether you want dictionary ordering or whether you want some other ordering.

If you're writing a sorting routine, you know which one you want, so that’s how you
make your comparison. If you're writing a general purpose sorting routine, then you have
to call a subroutine or do something like that to determine whether item A is less than
item B, whatever that is. If you're trying to sort keys to records or something, then you
have to know the ordering of whatever it is you're sorting. They may be different kinds of
things. Sometimes they may be character strings, but think of what the possibilities are.
When you write the sorting algorithm, you don’t know any of that stuff, which means it has
to be put in later. If it’s done at runtime, of course, then it’s runtime interpretation.

That can be done efficiently, don’t get me wrong, because you can have a little program, a
subroutine, and then all the person has to do is, in the subroutine, to write the rules for
ordering the elements that he’s sorting. But it isn’t automatic.

You don't get polymorphism for free. You have to write the polymorphic variants.

Tom: Somebody has to worry about it.

The other thing that the object-oriented people talk about is inheritance. That’s only
important if you have data typing in your language. I've read the introductions to a num-
ber of object-oriented books, and they talk about a guy writing a circle routine. Somebody
else might use it for some other purpose, but that’s extremely rare. The problem that I've
always felt about stuff like that is that if you want to write a routine that’s general-purpose
enough that other people might want to use it, then you’ve got to document the hell out
of it, and you have to make it available. I mean there’s a whole raft of considerations.
You're almost writing a complete application with documentation.

For the kind of programs I do, that’s overrated. I don’t know what happens in the industry.
That’s another matter.

Would you call that idea of cheap and easy code reuse premature ¢eneralization?

Tom: It's an idea that may have relevance in the programming profession, but it does not
have relevance to the wider group of amateurs who might write programs. As a matter of
fact, most people don’t write programs these days. Much of what we used to write pro-
grams for is now done by an application that you can buy or you can put it into a spread-
sheet, or whatever. Having nonprofessional programmers, people in other fields, write
programs is not done very much anymore.

88 CHAPTER FIVE Download at Boykma.Com

One of the things that bothers me about the education of programming primarily in second-
ary schools, where they have an advanced placement in computer science, is that it’s much
too complicated. I don’t know what languages they teach these days, I haven’t looked at it.

I once looked at how I would structure a first college course in computer science using
BASIC. It could do practically everything I'd ever want to do in a beginning computer sci-
ence course except deal with pointers and allocated storage. That’s sort of a complexity. If
you use Pascal for the language, you may have to get into pointers and allocated storage
when people don’t even know what a computer program is, but that’s neither here nor
there. I never pushed my views. I'm one against many.

People are starting to believe that you don’t have to deal with allocated memory and
pointers much anymore unless you're writing virtual machines. Those who write
compilers do, but that’s our job.

Tom: Let the compiler do it; you don’t have to do it.

We got portability in True BASIC. A couple of young men who were really brilliant did the
design. I just was with the company and did application programming. They designed an
intermediate language that was in the fashion of the P code of Pascal. Instead of being two
address, it was three address, because it turned out that practically all instructions in
BASIC are three address, LET A = 3. That’s three things, the opcode and the two addresses.
Then they built a compiler using BASIC itself, and built a very crude support to actually
compile that compiler. The compiler itself is written in True BASIC, and it runs on any
machine for which there is a True BASIC engine, which we call the interpreter.

The language is interpreted at the execution level, not at the scanning level. So there’s
three stages in the execution of the program. The first is the compiler stage, the second is
the linking/loading stage, and the third is the execution. But the user doesn’t know that.
The user just types run or hits run or something and bang, it happens.

The compiled code is also machine-independent. It can transport that across boundaries.

It’s really quite a sophisticated language environment. We were on multiple platforms, four
or five different platforms for a while, but most platforms lived a short time and died, of

course. Now there’s only two major platforms or three major platforms left: Unix, Microsoft,
and, for us, Apple—an interesting platform because Dartmouth was always an Apple school.

Doing the porting to those platforms turned out to be a dog. The windowing support and
the gadgets and the buttons and all that kind of stuff, they all do it differently, and you
have to get down to the detail of how they do it. Sometimes they do it at a very low level,
so you have to build all that stuff up yourself.

The old, original Mac, it had a Mac toolbox. For a while, we used a layering software, XVT
out of Boulder, Colorado, which claimed to target Windows and also the classic Mac. We
were able to get some mileage out of that. Before the company went defunct, the pro-
grammer put out a version for Windows; it goes directly to the Windows application
environment.

Download at Boykma.Com BASIC

89

90

CHAPTER FIVE

The trouble with those is that when we have a single programmer doing all of that stuff, it
takes a while, and new versions of the operating system come out and you run across new
bugs and have to track them down. It was almost impossible for a small outfit like we
were. At one point we had three programmers, then down to two, and then down to one.
That’s really just too much for one programmer to handle.

The underlying code, now that it’s largely C, contains tons of #ifdefs in it.

Language and Programming Practice

What is the link between the design of a language and the design of a software written
with that language?

Tom: Very tight. Most languages were designed with specific types of software in mind. A
prime example was APT, a language for controlling Automatic Programmed Tools.

You added the REM statement for comments in the early days. Has your opinion on
comments and software documentation changed over the years?

Tom: No, it’s a kind of self-defense mechanism. When I write programs in True BASIC, I
do add comments to remind me whatever I was thinking when I wrote the code. So I
think that comments play a role, and the role is different depending on what kind of pro-
grams you are writing, whether you work in a group or no other people read your code. I
believe in comments but only insofar as they are necessary.

Do you have any suggestions for people writing software in teams?

Tom: No, because we have never done it. All the software we have done in our environ-
ment has been solo work. In True BASIC we had maybe two or three people writing code,
but they were really working on completely separate projects. I just don’t have any expe-
rience working in teams.

You had a time-sharing machine, so you suggested that users should plan their session at
the teletype before sitting there. The motto was: typing is no substitute for thinking. Is this
true today?

Tom: I think probably that thinking does take place. When a major company is going to
develop a new software product, they do a lot of thinking before it, so I think that’s done.

One of the things I do personally is not thinking too much ahead but just start writing the
program. Then I will discover that it is not quite working out, so I will scrap the whole
thing and start over. That’s the equivalent to thinking. I usually start coding just to see
what the problems are going to be, and then throw that version away.

It is important to think about what you are doing—very important. I am not sure, but I
think Richard Hamming stated that “typing is no substitute for thinking.” Those are the
early days of computing and very few people knew how to do it, so there was a lot of
advice like that floating around.

Download at Boykma.Com

What is the best way to learn a new programming language?

Tom: Once one knows how to program, and knows the concepts (i.e., how storage is allo-
cated), learning a new language is straightforward if one has access to a reference manual,
and a decent implementation (i.e., compiler). I've done it many times.

Attending a class is pretty much a waste of time.

Any programmer worth her salt will know many languages in her professional lifetime.
(I probably have used more than 20 in mine.) The way to learn new languages is to read
the manual. With few exceptions, most programming languages are similar in structure
and in the way they operate, so new languages are fairly easy to learn, if there is a reason-
able manual available.

Once you get over the jargon hurdle (what does polymorphism mean?), things are really
fairly simple.

One problem with today’s programming style is that there are no manuals—just interface
building tools. They are designed so that programmers don’t have to type, letter by letter,
many of the instructions, but behave like the engineers’ CAD and CAM tools. To old-time
programmers like me, that is anathema—I want to type all the code, letter by letter.

There have been attempts in the past to simplify the typing (for poor typists or students) by
providing macros (such as a single keystroke for the keyword LET), but they never caught on.

I am now attempting to learn a language that is supposedly “object-oriented.” No refer-
ence manual exists, at least that I have found. The manuals that are available develop
what appear to be almost trivial examples, and spend perhaps 90% of the space pointing
out how OOP is such a superior “religion.” I have friends who took a C++ course, and it
was a disaster from a pedagogical point of view. My opinion is that OOP is one of the great
frauds perpetrated on the community. All languages were originally designed for a certain
class of users—FORTRAN for extended numerical computations, etc. OOP was designed so
that its clients could claim superior wisdom for being on the “inside.” The truth of the
matter is that the single most important aspect of OOP is an approach devised decades ago:
encapsulation of subroutines and data. All the rest is frosting.

Language Design

Do you think Microsoft’s current Visual Basic is a full-fledged object-oriented language, and if
so, do you approve of this aspect of it (given your dismissal of the object-oriented paradigm)?

Tom: I don’t know. With a few simple experiments, I found Visual Basic relatively easy to
use. I doubt that anyone outside of Microsoft would define VB as an OOL. As a matter of
fact, True BASIC is just as much object-oriented as VB, perhaps more so. True BASIC
included modules, which are collections of subroutines and data; they provide the single
most important feature of OOP, namely, data encapsulation. (True BASIC does not have
inherited types, since it doesn’t have user-defined types, other than array dimensions.
Hardly any language has polymorphism, which, in fact, implies runtime interpretation.)

Download at Boykma.Com

BASIC

91

92

CHAPTER FIVE

You mentioned that Visual Basic as compared to True BASIC had some severe limitations.
Do you mean that Visual Basic lacked something like your module system?

Tom: I don’t know. I only wrote some sample programs in—well, I didn’t write anything
in Visual Basic. I just convinced myself that I could do it. It had a fairly simple user inter-

face to it. This is in contrast to some of the others I tried to use once. Visual Basic was the
old Microsoft BASIC and they claim it was object-oriented but it really wasn't, just by add-
ing the front-end interface builder to it.

You also made an interesting comment about some of the bigger systems people are
building for video and audio. You said it’s easier to put together a sophisticated app like
that with an object-oriented language like Objective-C.

Tom: Yeah, probably because the language environment is made sufficient for that.

I'm trying to learn Objective-C right now without success, but at any rate, you have that

environment. If you know what you’re doing you can access all of that stuff that’s on the
platform, visual and audio, in some sort of a reasonable way. I haven't tried it, so I don’t

know how hard it is, but it’s included in the language development environment.

It’s not necessarily a feature of the language itself; it's a feature of the environment around
the language.

Tom: It doesn’t really have anything to do with the language per se, but it’s the language
environment. If the language environment is currently being used by a lot of people, then
there’s maybe a hundred programmers back in the factory making sure it works right.

What do the lessons about the invention, further development, and adoption of your
language say to people developing computer systems today and in the foreseeable
future?

Tom: Nothing.

From the early 60s I recall the Burroughs 5500 computer. Its hardware was designed to
allow pushdown stack applications, such as Algol compilers, to be more efficient.

Today, the trend seems to be in the other direction, toward RISC machines.

For most programming languages, nothing special is needed. Part of the reason is that the
speed of computers is so great, and getting greater, that the compiling and processing time
of a particular language is a nonissue.

The reverse might be true. For example, to process large arrays, you might build an array-
processing computer, which would then require you to develop a suitable programming
language.

Download at Boykma.Com

If today you had to create a completely new programming language for teaching, how
similiar would it be to BASIC?

Tom: Very, because the principles that we followed are still valid. For instance, we tried to
make a language that was easy to remember, so if a person didn’t use it for a long time,
they were still able to sit down and remember how to use it.

We tried to make a language that had a minimum of esoteric requirements. For example,
in FORTRAN if you wanted to print a number, you had to use a format statement and
indicate exactly how was it to be printed. That’s an esoteric subject for people to learn,
particularly if they don’t use the language that often, so what we were doing in BASIC
was just print the number in a way that we thought would be the best way to print it. If it
was an integer number, in fact, even though we use internal floating point, we would
print it out as an integer value without the decimal point. If you wanted to type in a num-
ber, you didn’t have to worry about the format; you would have just written your favou-
rite formula and it would have gone in—you weren’t restricted to some particular format
for entering data.

Most of the time this is followed by spreadsheets; they are good at this type of thing. You
can specity if you want a fixed-point output for numbers that are displayed in a particular
column, or if you don’t care you get the general form. I think that’s more or less what we
did with BASIC. We allow character input, and we do it in a very simple way: you just
type it in; there is no rule to follow.

During the 70s and 80s we developed structured programming versions of BASIC at Dart-
mouth and we added the elements to get the capabilities of object-oriented programming.
We would not have done anything differently.

Is encapsulation what you like about object orientation?

Tom: That is absolutely correct. I used to say that encapsulation is 70% of what object
programming provides, but I think I'm changing that to 90%. That’s the main thing, to
merge together routines and their data. That’s really important. I don’t write much any-
more, but everything that I've written when I was working for True BASIC and so on, I
encapsulated them.

We had a way of encapsulating groups of subroutines in what we called modules, which is
the same thing, but grouping the subroutines together and then they're isolated from the
rest of the programming except through their calling sequence. In fact, they had their own
private data. That turned out to be extremely handy to isolate functionality, that type of
thing.

Download at Boykma.Com BASIC

93

o4

CHAPTER FIVE

One of the things that I've asked many of these designers of languages and systems is to
what degree they like this notion of a mathematical formalism. Take Scheme, which
expresses the lambda calculus very effectively. You have six primitives and everything is
just beautifully built on top of that. That seems like the mathematician approach.

Tom: Yeah, that’s very interesting. That’s an interesting mathematical problem, but if
you're designing a computer language, you don’t have to do that stuff, because every
computer language that I've ever seen is much simpler than that. Even FORTRAN. Algol is
simple; it uses recursive definitions, but that’s fairly simple and straightforward.

I never studied the theory of programming languages, so I can’t make any more com-
ments than that.

Do you consider the people who will use a language and the biggest problems they're
going to have to solve?

Tom: Yeah. The biggest problem for the people that we were designing for was remem-
bering the language from week to week, but they only wrote one program every two
weeks. We also wanted a programming language and a system environment that we could
teach in a matter of a couple of hours, so you don’t have to take a course.

That’s how | and a lot of my peers learned to program. We had Microsoft BASIC on the
PCs of the early 80s—the Commodore 64 and the Apple I1. They were line BASICs with
subroutines, but not much else.

Tom: There are oddities floating around. They actually had some tricky stuft to it. For
example, I used Apple Soft BASIC. I don’t know if Microsoft did it or whether somebody
else did it, but all of those were copied from Dartmouth BASIC startup. They introduced
the idea of a multicharacter variable name, but they didn’t parse it correctly. If you hap-
pened to have a keyword buried inside your multiple-character variable name, it would
throw the thing off.

Was this because of whitespace insensitivity?

Tom: No, because they claimed to have multicharacter variable names, but they didn’t.
They faked it. If you had a multiple-character variable name which was, let’s say, TOT,
they would recognize the TO as a keyword. It was a marketing gimmick. Those languages,
little features were designed for the market. They thought that multiple-character variable
names would be a good gimmick. People that used the language managed to get around
that by not using multiple characters very much.

That’s not a process that’s discoverable reading the manual.

Tom: The errors in it are not, no.

How did whitespace insensitivity come about?

Tom: The only thing I know about it was published, and the reason for space insensitivity
is partly because John Kemeny was a poor typist. I don’t know if that was really the rea-
son. We codesigned the language, but a feature like that is something that he did.

Download at Boykma.Com

Because variable names are unique and do not look like keywords, spaces are not needed.
You can add spaces or remove them ad lib.

Things develop. Now when I write programs, there are still versions of True BASIC float-
ing around that run on various machines. That’s the only language I use, and I use spaces
to improve clarity.

Not to work around computer limitations; it’s solely a human factors issue for you?

Tom: That's right, because the main thing about a program, you know, if it’s a serious
program you're writing and you're going to be working on it, is to make sure that if you
put it aside for six months and pick it up again that you’ll be able to understand it by read-
ing it. It’s very important to choose variable names that suggest the quantities they repre-
sent or to build a structure; I'm thinking primarily the fact of using single-purpose
subroutines and then giving them a name that suggests what they do.

With multicharacter variable names of arbitrary length now a part of all computer lan-
guages, even if there are 20 letters in the subroutine name, nonetheless it tells what it
does. Someone can come back six months later and understand it.

Chuck Moore says that in Forth you build up a vocabulary of words so that you can write
in the language of the domain if you've chosen the words correctly. It’s interesting how
that idea has come up so many times.

Tom: A computer language like BASIC is designed for people who are not professional
programmers. If you are a person in some field and you decide to write an application pro-
gram for your field, you would prefer a simpler programming language to work with than
somebody who is a professional. I'm thinking in particular of these object-oriented lan-
guages that are floating around.

I have a little bit of experience with one of them, and it’s grotesquely complicated. It’s the
only computer language in my life that I have not been able to figure out, and I've written
programs in maybe 30 computer languages.

How would a WYSIWYG eliminate the need for line numbers? You suggested they existed
only as targets of GOTO statements. Are line numbers also needed so programmers can
refer to lines when editing a file?

Tom: Absolutely not (to the last question). Line-numbered editing has long since gone.

How would WYSIWYG change programming?

Tom: Not at all. The WYSIWYG editors are now sophisticated and closely associated with
the language they serve (in terms of indentation, use of color, etc.).

Is there anything we miss in computer science education today? Some people have said
that there’s no engineering focus, for example.

Tom: Well, I don’t know because I don’t know how they teach computer science today. I
retired 15 years ago and I didn’t teach anything but statistics and computer science, so I
have no idea of how the field has since developed.

Download at Boykma.Com

BASIC

95

How should debugging be taught?

Tom: Well, the best thing to do is to prevent it in the first place, and you do that by think-
ing ahead better.

One of our former students become an Apple fellow doing some very significant work for
them and then retired. Before that he worked at Dartmouth in the computer center. He
wrote a PL/1 compiler, and it’s a big thing, and he checked it, and looked at it, and so on,
but he never tested it, he never ran it until it was all done. You know, 20,000 or 30,000
lines of code, and the only test he did was to read it. Then he ran it and it worked the first
time!

That’s an oddity in the whole history of computer science! I mean somebody writes a
20,000- or 30,000-line program and it works correctly the first time, that’s bizarre, OK?
But he did it, and that’s the way to do it. He worked solo; he didn’t work in a team. You
are always more productive when you work alone. So he was very careful about how the
various parts of the programs worked together and he read code very carefully, and this
means that when you read the code what you are really doing is emulating what the com-
puter is going to do, so you check every step—this is right, this is right, etc.

So when he pressed the “go” button and it worked, that’s crazy, nobody does that, but
that’s the idea. You reduce bugs by keeping them out in the first place.

A lot of commercial software around these days is tremendously buggy because it is not
written by good programmers, it is written by teams, and the design of what it does is
determined by the marketing department. It has to come out in a certain period of time
with a certain program with certain capabilities, so it’s full of bugs. For the software com-
panies, most of the users just use superficial features in their computers, so they don’t run
into many bugs.

Would you draw a line between what you think is good to incorporate into the language
as opposed to a library?

Tom: Well, we paid a lot of attention to that, too. Anything that was a little bit esoteric
that only a fraction of the users would want to know about, we would put into a library.
That’s the way the language developed over the years. So we had a library for doing a lot
of things; in the modern version of BASIC, which is True BASIC, we use a library of sub-
routines to access the objects of object-oriented programming such as push buttons, dialog
boxes, and things of that sort. We use a library routine, and the access of that kind of stuff
is not included in the language per se, so you have to call a subroutine to do these things
and the subroutines are contained in a number of libraries. That is something we thought
quite hard about at the beginning.

96 CHAPTER FIVE Download at Boykma.Com

When people write software in teams, they often build common libraries for everyone to
use. Do you have any advice to build such libraries in True BASIC?

Tom: Well, T have written libraries myself, but I don’t have any particular advice besides
try to keep it simple. You know, these are techniques everybody knows about: keep things
simple and try to avoid introducing bugs.

Single-purpose subroutines, for example, are important. Don’t have subroutines that do
something on the side because it seems like a good idea. Side effects can be disastrous.
There are lots of ways to write libraries that can reduce or eliminate future bugs or errors.
There are well-known techniques for reducing errors, but I don’t know how much they
follow them in the industry, because in the industry the programs they write are dictated
largely by the marketing department.

Work Goals

How do you define success in terms of your work?

Tom: For many years because of our work—because it was so open, because we gave
unlimited access to students who were part of the project—Dartmouth had one of the best
computer reputations around the world. People visited us from Russia, Japan, and other
places, just to see what it was like. And this was before the days of common personal com-
puters. Now everyone has a personal computer, so it’s not an issue anymore, but in those
days it was a very interesting issue that we allowed students, any student, to do any com-
puting, anytime they wanted, without prior permission. That was novel in those days.
That gave Dartmouth a reputation that lasted 10 or 15 years and was to its advantage in
terms of fundraising, attracting students, and recruiting faculty.

The other success was that many students who went to Dartmouth and learned how to do
computing were able to build extraordinary careers out of the fact that they knew how to
do it. These were people not in the computing center of the corporations; they were work-
ing in other departments. There are quite a few Dartmouth students that became million-
aires just because they knew how to use a computer!

That’s the main measure of our success.

What should young people learn from your experience?

Tom: They should be aware of the eventual users of the software, the people that are
going to use their software. Many of the applications that we use these days are really very
hard to use.

I know that a number of years ago, people at Microsoft tried to introduce the idea of user
friendliness through a program called “Bob” or something like that, but they didn’t under-
stand it; they thought that “user friendly” meant “patronizing,” as if you are talking to a
child. That’s not what user friendly means.

Download at Boykma.Com BASIC

97

I am afraid that the industry at large doesn’t know what user friendly means. I don’t know
if people doing computer science these days would even understand what the words
mean.

My advice is to be concerned about the people who are going to use your software.

Should we build an interface that is easy to learn like BASIC was easy to learn?

Tom: Yes, easy to learn, simple to describe in a manual of some sort, and which does
more or less what you expect it to do when you use it, so there are no surprises.

You also said that you’re always more productive when you work alone, and | want to
understand what you mean by productive there.

Tom: I mean in very simple terms. I think there’s a lot of evidence that supports that. I
have never worked on a programming team in my life. I've always said, “OK, this needs to
be done, I'm going to write a program for it.” Everything I've written has been capable of
being managed by me, a single programmer.

I've used stuff that other people have written but I've never been part of a development
team. I've written, oh, I don’t know how many lines of programs, but I've got several
things out there that I'm still using that are 10,000 lines long. They’re easy to write.
They’re easy to debug. If you find a feature that you don't like, it’s easy to change—and
you don’t have to write memos if you're working by yourself. I don’t mind doing the doc-
umentation, either, if it has documentation. Most of my stuff doesn’t because it’s for my
own use, but I'm a believer in everything that Fred Brooks ever wrote about programming
in his book The Mythical Man-Month.

I like the one he says about estimating how long it takes to write a program. A program-
mer writes three lines of documented code per day or something like that, and they dis-
covered that their applications were just taking too long. They couldn’t figure out what was
wrong with them. Then they discovered the reason was programmers only work 20 hours a
week. They're in the factory for 40 hours, but 20 hours are spent doing nonproductive
things, going to staff meetings.

That’s the thing I hate the most: staff meetings. Sometimes they're absolutely necessary. I
remember when the original BASIC was being developed for the GE225, GE235 comput-
ers. The student programmers would meet for a weekly meeting of about one hour. John
Kemeny would chair that meeting, and as he liked to say, he made all of the unimportant
decisions, like who is favored in the scheduling algorithm and so forth and so on, but the
students made all the important decisions, like which bit is used for what purpose.

We had a two-machine environment in those days, and so there was one student on each
machine. They were sophomores, and so they had to work together, they had to commu-
nicate. By and large they did their own work. Anytime we were writing a compiler or an
editor, that was a single-person job.

98 CHAPTER FIVE Download at Boykma.Com

You made this comment in the context of the discussion about the student who wrote a
PL/1 compiler, and the first time he ran it, it worked.

Tom: That’s Phil Koch, and he’s an Apple fellow. He’s retired from Apple now, living in
Maine. He was an astonishing programmer. It took him a long time and he read code
religiously.

If there is one lesson you'd like people to learn from your vast and varied experiences
over the years, what is that?

Tom: Make it easy for your users to use your software.

You can say user friendly if you want, but part of that is that the industry has defined user
friendly to be, in my view, condescending. The real issue on user friendliness is to have
reasonable defaults in whatever application you’'re doing, so the person who’s just come
to it fresh doesn’t have to learn about all of the variations and degrees of freedom that are
possible. He or she can just sit down and start to do it. Then if they want to do something
different, make it relatively easy to get at that.

In order to do that, you have to have some sort of an idea of what your user base is going
to be.

I've used Microsoft Word frequently, but by my standards, it’s not user friendly at all.
Then Microsoft came out with that Bob thing about 10 years ago, and that was the wrong
idea. They didn’t understand what user friendly really means.

Some applications, I think, are user friendly, but the big thing now is website design. Peo-
ple that design websites, sometimes they do a good job and sometimes they don’t do a
good job. If you go to a website and you can’t figure out what to do to get more informa-
tion, that’s a lousy design.

That stuff’s hard to teach.

Ben Shniederman, a specialist in human factors in computer science at the University of
Maryland, actually did some studies* that suggested that what we had chosen in BASIC for
our structures for DO, LOOP, and IF were easier in the sense of user friendliness than
some of the other structures that were using the other languages, like the semicolon in
Algol or Pascal to end a sentence.

People normally don’t use semicolons to end sentences, so that’s something that you have
to learn specifically. I remember in FORTRAN, for example, there were places where a
comma is needed and places where a comma isn’t needed. As a result, there was a bug in
a program down at the space station in Florida where they lost a rocket because there was
a missing comma. I think Ed Tufte actually documented that. Try to stay away from stuff
that’s possibly ambiguous.

* Shneiderman, B. “When children learn programming: Antecedents, concepts, and outcomes,” The
Computing Teacher, volume 5: 14-17 (1985).

Download at Boykma.Com BASIC

99

I keep saying to the world at large, Kemeny and I failed because we didn’t make other
people’s computers user friendly, but we did a good job with our own students because for
20 or so years, our students were going out and getting very cushy jobs in the industry
because they knew how to do things.

That is a good type of success to have.

Tom: If you're a teacher, that’s really the main thing.

100 CHAPTER FIVE Download at Boykma.Com

CHAPTER SIX

AWK

The Unix philosophy of many small tools, powerful in their combination, is evident
in the AWK programming language. Its inventors (Al Aho, Peter Weinberger, and
Brian Kernighan) describe it as a language for syntax-driven pattern matching. Its
straightforward syntax and clever selection of useful features make it easy to slice
and dice text through one-liners without having to understand parsers and gram-
mars and finite automata. Though its inspiration has spread to general-purpose
languages such as Perl, any modern Unix box still has AWK installed and quietly,
effectively, working away.

Download at Boykma.Com

101

The Life of Algorithms

How do you define AWK?

Al Aho: I would say AWK is an easy-to-learn and easy-to-use scripting language that
excels at routine data-processing applications.

What was your role in the development of AWK?

Al: T was doing research into efficient parsing and string pattern matching algorithms in
the 1970s. Brian Kernighan and I had been talking about generalizations of grep to be able
to do more general pattern matching and text processing for many data-processing appli-
cations we had in mind. Peter Weinberger came along and expressed great interest in this
project, so we quickly implemented the first version of AWK in 1977.

The language then evolved considerably for a few years as a number of our colleagues started
to use it for a large variety of data-processing tasks, many of which we had not anticipated.

In what context is AWK most appropriate?

Al: T think AWK is still unbeatable for simple routine data-processing applications. Our
AWK book has dozens of practical examples of where a one- or two-line AWK program
can do what would take dozens or hundreds of C or Java lines to implement.

What should people keep in mind when designing software written in AWK?

Al: AWK is a scripting language that was designed for writing short programs for common
data-processing applications. We didn’t intend it to be used to program large applications,
but we often found people were doing this because the language was so easy to use. For
large applications I'd recommend the usual good software engineering practices: good
modularization, good variable names, good comments, and so forth. These practices are
also good for short programs.

How does the availability of hardware resources affect the mindset of programmers?

Al: It’s certainly true that fast hardware, plenty of memory, and good IDEs have made pro-
gramming more enjoyable. Also, programs can be applied to much larger datasets than ever
before in the past. I now routinely run AWK programs on inputs that are several orders of
magnitude larger than in the past, so fast hardware has made me more productive as a user.

However, there is a tradeoff: improvements in hardware have led to explosions in the size
and complexity of software systems. Software does become more useful as hardware
improves, but it also becomes more complex—I don’t know which side is winning.

When you developed the algorithms behind AWK, how did you estimate the size of data
with which your code would work?

Al: Whenever possible, we implemented algorithms that were linear in time, in either the
worst case or the average case. This way AWK could gracefully scale to handle larger and
larger inputs.

102 CHAPTER SIX Download at Boykma.Com

We tested AWK on various sizes of datasets to measure how performance would scale as
the size of the input grew. We tried to make our implementation as efficient as we knew
how, using real data to test how well we were doing.

Did you consider how the size of data would grow in the future?

Al: When we designed AWK, I thought a megabyte dataset was huge. If we consider the
exabytes of data now available on the Internet, we were many orders of magnitude off in
what’s now considered a large dataset. Of course, even a linear-time scan of a terabyte of data
is far too slow, so a whole new approach is necessary to process relevant data on the Internet.

I've heard AWK described as a “pattern-matching language suitable for simple data-
processing tasks.” Considering that AWK was created more than 30 years ago, what has
changed since then in pattern matching?

Al: The scale and diversity of pattern matching has exploded in the past 30 years. The
parameters of the problems have broadened significantly; the patterns have become more
complex and the size of the datasets has vastly increased. Today we routinely use search
engines to look for textual patterns in all of the web pages on the Internet. We are also
interested in data mining—looking for patterns of all kinds in huge digital libraries such as
genomic databases and scientific archives. It is fair to say that string pattern matching is
one of the most fundamental applications in computer science.

Are there better pattern-matching algorithms and implementations of them today?

Al: Pattern matching in AWK was done using a fast, compact, lazy state-transition con-
struction algorithm to build from a regular expression the transitions of a deterministic
finite automaton needed to do the pattern matching. The algorithm is documented in the
Red Dragon book.* The running time of the algorithm is basically linear in the length of
the regular expression and in the size of the input text. This is the best known expected
running time for regular expressions. We could have implemented a Boyer-Moore algo-
rithm or an Aho-Corasick algorithm for the special cases when a regular expression is a
single keyword or a finite set of keywords. We did not do this since we did not know the
characteristics of regular expressions that people would use in AWK programs.

I might mention that there is a dark side to using complex algorithms in software systems.
The algorithms may not be understandable by others (or even the original author, after a
long passage of time). I had incorporated some sophisticated regular expression pattern-
matching technology into AWK. Although it is documented in the Red Dragon book, Brian
Kernighan once took took a look at the pattern-matching module that I had written and his
only addition to that module was putting a comment in ancient Italian: “abandon all hope, ye
who enter here.”t As a consequence, neither Kernighan or Weinberger would touch that
part of the code. I was the one that always had to make the bug fixes to that module!

* Aho, Alfred V. et al. Compilers: Principles, Techniques, and Tools (Addison-Wesley, 1986).

t Lasciate ogne speranza, voi ch’intrate is the inscription on the gate of Hell in Canto III, Inferno, The
Divine Comedy, by Dante Alighieri.

Download at Boykma.Com AWK

Language Design

Do you have any advice for designers of programming languages?

Al: Always keep your users in mind. Having others say they used your tool to solve a
problem is very rewarding. It’s also satistying having others build on your work to create
more powerful tools.

How did Kernighan and Weinberger think about language design?

Al: If I had to choose a word to describe our centering forces in language design, I'd say
Kernighan emphasized ease of learning; Weinberger, soundness of implementation; and I,
utility. I think AWK has all three of these properties.

How do you make design decisions with utility in mind? How does that affect the way you
think about design?

Al: I don’t know whether it’s conscious or unconscious, but certainly the things that sur-
vive are things that are useful. It reinforces the notion of Darwinism. You create notions
and dictions that are useful for solving problems that you're interested in, but if they're
not good at solving the problems that others are interested in, they wither away. It’s sur-
vival of the fittest ideas that create utility. We don’t keep languages that aren’t useful.

Unless we're art historians, there’s a dichotomy between a program that is beautiful or a
program that is functional.

Al: Can’t you have both?

People seem to want to draw the line there. The question is whether programming is a
creative endeavor, whether it’s art or craft.

Al: Knuth of course was very interested in programming as an art. He thought that pro-
grams should be beautiful. Almost all of the programmers that I know feel that there
should be elegance in the programs that you write.

A craftsman woodworker might say, “Here’s a chair. You can sit on it or you can stand on
it. You can stack phone books on it, but look at the elegant design, look at the wonderful
joints, look at the wonderful carvings.” There’s artistry, even if it's a functional tool.

Al: But there can also be beauty in minimalism, so we don’t need all sorts of ornamenta-
tion or rococo architecture to make things beautiful.

How can someone become a better programmer?

Al: My number one suggestion is to think before you program. Then I would advocate
writing lots of code, having experts critique your code, reading good code written by
others, and participating in code reviews. If you're really brave, you could try to teach stu-
dents to write good code.

lo# CHAPTER SIX Download at Boykma.Com

I have found that there’s no better way to learn a subject than teaching it to others. In the
process of teaching, you have to organize the material and the presentation in such a
manner that the subject becomes clear to others. When you're doing this in a classroom
setting, students will ask you questions that will expose different ways of thinking about
the problems than you had initially thought about. Your insights deepen and become far
sharper than they used to be.

This is certainly true about programming. If you are teaching programming, students will
ask, “Couldn’t we solve it this way, couldn’t we solve it that way?” Then you realize, “Yes,
there are many ways to solve that problem with a program.” You recognize that people
think very differently, and because they think differently, they have different approaches
to solving problems, and through that, you get a much better appreciation for different
approaches to solving the problem.

I have certainly found that in every book that I have written with programs in it, the pro-
grams have gotten more efficient and shorter with the writing of the book. During the
year we wrote the AWK book, many of the programs in it became 50% shorter. This is
because we learned how to use the abstractions in AWK even more effectively than we
initially had thought.

Did you find deficiencies in the design of AWK when you wrote the book?

Al: When people started using AWK for many other tasks than we initially thought, it
exposed certain aspects of the language where we hadn’t intended it to be a general-
purpose programming language. I wouldn’t call these “deficiencies,” but it showed that
AWK was a specialized language that was not intended for some of the applications that
people were trying to use it for.

Were you able to address some of those, or did you strongly resist making AWK more
general purpose?

Al: After the initial version of AWK was created, the language evolved for about a decade
with the addition of new constructs and new operators, but it stayed a pattern-action lan-
guage, a language that was intended for solving data-processing problems. We didn’t take
it out of that domain.

How do you make the idea of syntax-driven transformations accessible to users who
might not know very much or anything at all about finite-state machines and push-down
automata?

Al: Certainly as a user of AWK, you don’t need to know about these concepts. On the
other hand, if you're into language design and implementation, knowledge of finite-state
machines and context-free grammars is essential.

Download at Boykma.Com AWK

Should a user of lex or yacc understand the context-free grammar even if the programs
they produce don’t require their users to understand them?

Al: Most users of lex can use lex without understanding what a finite-state machine is. A
user of yacc is really writing a context-free grammar, so from that perspective, the user of
yacc certainly gets to appreciate grammars, but the user doesn’t have to become a formal
language theorist to use yacc.

Otherwise you suffer through pages of pages of shift/reduce conflict errors.

Al: One useful aspect of yacc is that since it automates the construction of a deterministic
parser from a grammar, it informs programming language designers about constructs in
their language that are ambiguous or difficult to parse. Without the tool, they might not
have noticed these infelicitous constructs. With yacc, language designers often said, “Oh, I
didn’t realize that there were two ways to interpret this grammatical construct!” Then
they eliminated or modified the questionable construct. Ambiguities in precedence and
associativity were easily resolved by simple mechanisms that specified “I'd like to have this
order of precedence for the operators in the language, and this order of associativity.”

How do you build a debugging-friendly language? When designing a language, how do
you think about features you need to add or remove to aid the debugging phase?

Al: The trend in programming language design has been to create languages that enhance
software reliability and programmer productivity. What we should do is develop lan-
guages alongside sound software-engineering practices so that the task of developing reli-
able programs is distributed throughout the software lifecycle, especially into the early
phases of systems design.

Systems cannot be developed assuming that human beings will be able to write millions of
lines of code without making mistakes, and debugging alone is not an efficient way to
develop reliable systems. Regularity of syntax and semantics is a good way to eliminate
accidental errors.

Unix and Its Culture

Early Unix culture seemed to promote the idea that when you have a problem, you write
a little compiler or a little language to solve it. At what point do you decide it’s the right
approach to create a language to solve a specific problem instead of a program in
another language?

Al: There are thousands and thousands of programming languages in the world today,
and one can ask why these languages arose. Virtually every area of human endeavor has
its own jargon. Musicians have a special notation for writing music; lawyers use jargon to
talk about the law; chemists have special diagrams for describing atoms and molecules and
how they get combined. It’s not unnatural for people to say, “Let’s create a language
around these notations for solving problems arising in a given area.”

106 CHAPTER SIX Download at Boykma.Com

You can use a general-purpose programming language to express any algorithm, but on
the other hand, it’s often more convenient, more economical, and perhaps even more
suggestive of solutions to have a specialized language to solve a specific class of problems.
It becomes a judgment call when to create a new language, but if the area is of interest
and there are special dictions that are amenable to automation, then it’s only natural that
a programming language would arise for expressing solutions to problems in a given area.

Economical in terms of programmer investment or hardware time?

Al: Languages, at least in the early days, came about because people recognized certain
important classes of problems that they needed to solve, and then they devised hardware-
efficient programming languages to create programs for solving problems in those areas.
As hardware has become cheaper and faster, languages have tended to become higher-
level and hardware efficiency less relevant.

Did you consider AWK strong enough in its niche on its own?

Al: The pattern-action paradigm that’s embedded in AWK is very natural for solving large
classes of commonly occurring data-processing problems. Changing this paradigm would
vitiate the language and not make it as appealing for the class of problems that we had in
mind. The language is also very useful for Unix command-line programming.

That sounds like the Unix philosophy of combining many small tools that are each very
good at what they do.

Al: I think that’s a very apt description.

Most of the places I've seen AWK are command lines or shell scripts.

Al: Applications where you can compose problems on the command line, or create shell
scripts that are a combination of Unix commands, are very popular AWK programs. This
style of problem solving epitomized early AWK applications on Unix, and even many Unix
applications today.

In Unix, “everything is a file.” Do you have a vision of what might be considered the “file”
of the Internet?

Al: Files are a nice simple abstraction that should be used wherever they are appropriate.
The Internet of today, however, has become much richer in data types and programs often
have to deal with streams of concurrent interactive multimedia data. Today the best solu-
tion seems to be to use standardized, well-defined APIs for dealing with data, and security
programs need to be concerned with how to react properly to ill-formed data.

What limits do you see in command-line tools and in graphical interfaces?

Al: AWK is very useful for converting the output format of one program so that it can be
used as input to another. If a graphical interface has preprogrammed this kind of data con-
version as a mouse-click, then that is clearly more convenient. If it hasn’t, then it may be
very difficult to get at the internal formats to do the needed data conversions.

Download at Boykma.Com AWK

107

Is there a connection between that idea of composing programs together from the
command line through pipes and the idea of writing little languages, each for a specific
domain?

Al: I think there’s a connection. Certainly in the early days of Unix, pipes facilitated func-
tion composition on the command line. You could take an input, perform some transfor-
mation on it, and then pipe the output into another program. This provided a very
powerful way of quickly creating new functionality with simple compositions of programs.
People started thinking how to solve problems along these lines. Larry Wall’s language
Perl, which I think of as a descendant of AWK and other Unix tools, combined many
aspects of this kind of program composition into a single language.

When you say “function composition,” that brings to mind the mathematical approach of
function composition.

Al: That’s exactly what I mean.

Was that mathematical formalism in mind at the invention of the pipe, or was that a
metaphor added later when someone realized it worked the same way?

Al I think it was right there from the start. Doug Mcllroy, at least in my book, deserves the
credit for pipes. He thought like a mathematician and I think he had this connection right
from the start. I think of the Unix command line as a prototypical functional language.

To what degree is formalizing the semantics and ideas of a language useful? Is there an
underlying formalism in AWK?

Al: AWK was designed around a syntax-directed translation scheme. I was very interested
in compilers and compiler theory, so when we created AWK, the implementation was
done as a syntax-directed translation. We had a formal syntax for AWK in the form of a
context-free grammar, and the translation from the source language to the target lan-
guage was done in terms of semantic actions based on that formal grammar. This facili-
tated the growth and development of AWK. We had at our disposal the newly created
compiler construction tools, lex and yacc, which greatly aided experimentation with and
development of the language.

Simon Peyton Jones from Haskell said that they had formalisms for 80/85% of the
language, but beyond that it just wasn’t worth their time to formalize the rest because of
diminishing returns.

Al: Because of security, specificity is becoming a much more important issue in language
and systems design. Hackers often exploit the unusual or unspecified parts of a system to
compromise security.

108 CHAPTER SIX Download at Boykma.Com

Add into that the problem of library design, and suddenly the problem gets even larger.
“I've specified the formalisms of my language, but now I need a library to interact with
the Internet; have | quantified the formalisms of that library? Do they fit the formalisms?
Do they violate the formalisms and guarantees of the language?”

Al: Having worked in the telecommunications industry, I noticed virtually all of the inter-
face specifications for which Bell Labs constructed equipment conformed to an interna-
tional standard. Having said this, many of the standards were written in English and so
they were often ambiguous, incomplete, and inconsistent. But in spite of these difficulties,
the international telecommunications network and Internet interoperate and work well
largely due to well-defined interfaces between systems.

Third parties often create device drivers and applications for other vendors’ operating sys-
tems. If a device driver or application is buggy, the systems vendor gets a bad rap for poor
software quality when it isn’t their fault. Recently, the research community has made
great strides in building software verification tools using model checking and other power-
ful verification techniques that can check to make sure that programs written by device-
driver vendors and other application developers use systems APIs correctly. These new
software verification tools are having a pronounced benefit on software quality.

Would languages benefit from this formalism?

Al: Almost every language today admits of some kind of formal grammatical description. The
big problem is how completely we are able to, or willing to, describe the semantics of the lan-
guage using the current formalisms for describing programming language semantics. The
semantic formalisms are not nearly as mechanizable as constructing a parser from a context-
free grammar. Even though describing semantics is tedious, I'm a big believer in the benefits
of planning and describing and outlining the semantics of a language before implementing it.

I think of two stories: the canonical story about Make, where Stuart Feldman decided he
couldn’t remove tabs because he already had 12 users, as well as Dick Gabriel’s “Worse Is
Better” paper,” where he described the New Jersey approach and the MIT approach. Unix

and C and the New Jersey approach won.

Al: I've always expressed that as the success of Darwinism. I believe that successful lan-
guages grow and evolve based on usage by real programmers. Languages that need a pon-
derous committee for their initial design are by-and-large ignored by programmers. Unless
their use is mandated, they don’t seem to survive.

One perhaps alarming aspect of popular languages is that they are relentlessly becoming
bigger. We don’t know how to take features out of existing languages. The major lan-
guages of today, such C++ and Java, are much much bigger now than when they were ini-
tially created, and there seems to be no abatement in sight for the future sizes of these
languages. No single individual can really understand all of the language any more and
the compilers for these languages are measured in millions of lines of code.

* http://www.dreamsongs.com/WorselsBetter.html

Download at Boykma.Com

AWK

http://www.dreamsongs.com/WorseIsBetter.html

110

CHAPTER SIX

That seems to be an open question in systems research: how do you make a language that
is extensible beyond its initial problem domain without necessarily having to modify the
language itself? Do you have an extension mechanism?

Al: Libraries are the time-honored approach to doing that.

Even C++ and Java have upcoming language changes.

Al: That's true. Even the core languages are growing, but there is a centering force to keep
the core language compatible with the past, so you don’t break existing programs. That
stops unmitigated evolution of these language.

Is that necessarily a good thing in and of itself?

Al Certainly being able to run programs from the past is very desirable. At one time I wrote
an article for Science Magazine entitled “Software and the Future of Programming Languages.”
In it I tried to estimate how much software the world uses to run its affairs, taking into
account all distinct software systems used by organizations and people around the world.

I estimated between a half a trillion and a trillion source lines of software. Assuming it
costs $10 to $100 to create a finished line of software, I concluded that we simply cannot
afford to reprogram a substantial portion of the legacy base. What this means is that the
existing languages and systems will continue to be with us for a long period of time. In
many ways hardware is more portable than software, because we always want to create
faster hardware that’ll run the old programs.

With Unix, you had an operating system that was suddenly very portable. Was that
because they could port it, or because they had a desire to migrate existing software to
different hardware platforms as they changed?

Al: As Unix evolved, computers evolved even faster. One of the big developments in Unix
occurred when Dennis Ritchie created the C language to build the third version of Unix. This
made Unix portable. In a relatively few years when I was at Bell Labs, we had Unix running
on everything from minicomputers to the world’s biggest supercomputers because it had
been written in C, and we had portable compiler technology, which could be used to
make C compilers quickly for new machines.

A strong focus of Unix was to create a system that would facilitate software development,
one that programmers liked and would be willing to use to develop new programs. I think
it was eminently successful at that.

Most of the best tools and most of the best software written do that.

Al: It’s an interesting question: are the best toolmakers the artisans or the toolsmiths? I
don’t think there’s a clear-cut answer to this, but certainly in the early days of Unix, many
of the most useful tools were created by programmers who had devised innovative tools to
to solve problems that they were interested in. This was one of the reasons why AWK was
born. Brian, Peter, and I had certain classes of application programs we wanted to write,
but we wanted to write them with really short programs.

Download at Boykma.Com

Did the presence of tools and the rapidity of practical feedback push people to research
better tools and better algorithms?

Al: If you look at the early history of Unix and my early research career, I was very strongly
motivated by Knuth’s statement that the best theory is motivated by practice, and the best
practice by theory. I wrote dozens of papers looking at how to make parsing more efficient
and being able to parse constructs that appear in real programming languages in a convenient
and efficient way. Steve Johnson, Jeff Ullman, and I collaborated very closely in the develop-
ment of this theory and of yacc, so yacc was a great marriage of theory and practice.

The Role of Documentation

When | write documentation, or a tutorial or paper, for a piece of software I've written, |
often find places where the design is difficult or embarrassing to explain, and that leads
me to refine the program. Do you find something similar?

Al: Very much so. My experience with AWK had a profound impact on how I teach the
programming languages and compilers course at Columbia. As part of the course there is a
semester-long project in which students work in teams of five to create their own little
language and build a compiler for it.

In the 20 years or so that I've been teaching the compilers course, never has a team failed
to deliver a working compiler by the end of the semester. This success has not come about
by accident but by my experiences working on AWK, seeing how software development
was done at Bell Labs, recognizing the importance of a lightweight software engineering
process for a project of this kind, and listening to my students.

The software engineering process that accompanies the compiler project is vital to the suc-
cess of creating a new language and building a working compiler for it in 15 weeks. Stu-
dents get two weeks to decide whether they want to take the course. After two weeks the
students form teams, and after another two weeks they have to write a short white paper
(patterned after the Java white paper) describing the language they want to create. The
white paper really a value-proposition for the language stating why their language is
needed and what properties it should have. The most important aspect of the white paper
is that it forces the students to quickly decide what kind of language they want to create.

After a month, the students write a language tutorial and a language reference manual.
The tutorial is patterned after Chapter 1 of Kernighan and Ritchie’s The C Programming
Language [Prentice-Hall], and the reference manual is patterned after Appendix A of the
same book. I critique both the tutorial and the language reference manual very carefully
because at this point the students don’t realize how hard it is to create a working compiler
even for a small language.

I ask the students to state what features they guarantee to implement and what features
they will implement if they have extra time. (Never have the students implemented any of
the extra features.) The purpose of this exercise is to define the scope the project so that it
can be done in the course of a semester and is equivalent in effort to the other projects.

Download at Boykma.Com AWK

111

112

CHAPTER SIX

As soon as the teams are formed, the students elect for their team a project manager, a
systems architect, a systems integrator, a verification person, and a language guru. Each of
these people play a critical role in creating and delivering a working compiler.

The project manager’s responsibility is to create and enforce a timeline for the deliverables
of the project. The system architect creates the block diagram for the compiler and the sys-
tems integrator defines the tools and development environment that will be used to create
the compiler. As soon as the language reference manual gets written, the verification per-
son creates a test plan and test suite for the entire language. The language guru makes

sure the properties defined in the white paper for the language actually get implemented.

We created a regression test suite for AWK, perhaps a little belatedly. Our test suite was
invaluable. As we developed the language, we always ran the regression test suite before
submitting our deltas to the master directory. In this way we always had a working ver-
sion of the compiler at all times. Before we added new features to the language, we cre-
ated and added the tests for the features to the regression test suite.

I mentioned that no student team has ever failed to deliver a working compiler at the end
of the semester. The regression test suite is key to achieving this goal: the students deliver
at the end of the semester what they have working at that time. But the working compiler
needs to implement the language features promised in the language reference manual.

The systems architect produces a block diagram for the compiler, what the interface speci-
fications are, and who is going to implement which component by when. Every member
of the team has to produce at least 500 lines of original source code for the project, and
everybody, including the project manager, has to do some implementation. It’s very salu-
brious (and challenging) for students to create programs that have to interface with other
people’s code.

The system integrator has to specify the platform on which the compiler will be built, and
what tools like lex, yacc, ANTLR, or their equivalents are going to be used. He also has to
learn how to use the tools and teach the rest of the team about their proper use, so that
there is a tools person resource on every team.

The language guru has the most interesting job. He is responsible for the intellectual integ-
rity of the language, so that the properties that were stated in the language white paper
actually get implemented. He needs to baseline design and coding changes so that if the
team makes a change to the language design, these changes get recorded and disseminated
to the entire team and the regression test suite.

Through the project students learn three important skills: project management, teamwork,
and communication, both oral and written. At the end of the course, I ask the students
what is the most important thing they have learned during the course. Frequently they
cite one or another of these skills. Documentation drives the project and students get lots
of practice writing and talking about software. The students have to give an in-class pre-
sentation on their language, the primary goal of which is to convince their fellow students
that everybody in the world should use their language. I rehearse with the first team on

Download at Boykma.Com

how to give a successful presentation. Subsequent teams always try to outdo the first team
in their presentations because the students are so enthusiastic about their languages. The

languages created have ranged from simulating quantum computers to composing music,
to producing comics, to simulating civilizations, to doing fast matrix computations, to gen-
erating graphics.

At the end of the course the students have to deliver a final project report, which has as
chapters: the language white paper, the language tutorial, the language reference manual,
a chapter written by the project manager on how the project was managed, a chapter by
the system architect giving the block diagram and interface specifications, a chapter by the
systems integrator describing the development platform and tools, a chapter by the verifi-
cation person with the test plan and test suites, and then a chapter by the language guru
talking about language-baselining process. The final chapter is entitled “Lessons Learned”
and answers the questions “What did you learn as a team? What did you learn as an indi-
vidual? If I were to offer the course again next year, what things would you suggest I keep
the same; what things would you suggest I change?” An appendix contains the code list-
ing, with the authors signing each module that they wrote.

If you make something better over a long period of time, it usually becomes pretty good.
I've heeded the advice students have given me, and a few years ago I received the Great
Teacher Award from the Society of Columbia Graduates for this course.

Many recruiters interviewing students who have taken this course have said they wished
their software systems were developed with this kind of process.

Which grade level are the students in this class?

Al: They’re mostly seniors and first-year graduate students, but there are a lot of prerequi-
sites for this course: advanced programming, computer science theory, and data structures
and algorithms. What impresses me about the students is that they end up doing distrib-
uted software development, so they’re using things like wikis and advanced IDEs. Many of
the students have interned in industry.

One thing I strongly emphasize is for the students to keep the regression test suite up to
date as the language evolves. The regression test suite makes the students much more pro-
ductive, because the bugs they find tend to be their own, rather than those of some other
person on the team.

When and how should debugging be taught?

Al: I think debugging should be taught along with programming. Brian in his various
books has sound pragmatic advice on debugging. However, I don’t know of any good
general theory for debugging. The techniques one would use to debug a compiler are very
different from those used to debug a numerical analysis program, so maybe the best approach
is to stress examples of unit tests, systematic testing processes, and use of debugging tools, as
part of every programming course. I also think it is salubrious to get students to write specifi-
cations for what their programs are supposed to do before they write the program.

Download at Boykma.Com

AWK

113

One of the mistakes we made with AWK is that we didn’t institute rigorous testing right
from the start. We did start rigorous testing after the project began, but in hindsight we
would have been much more productive had we created and evolved the rigorous test
suites right from the beginning.

What factors should developers measure during the evolution of a codebase and in what
way?

Al: The correctness of the implementation is the most important concern, but there is no
royal road to correctness. It involves diverse tasks such as thinking of invariants, testing,
and code reviews. Optimization should be done, but not prematurely. Keeping the docu-
mentation and comments consonant with the code is important, but all too easy to
neglect. A modern IDE with good software development tools is a must.

How do you resume a programming session when you haven't touched it in a few days?
After several months?

Al: When one is writing a programming system (or a book, for that matter), one needs to
keep the entire system paged in one’s mind. Interruptions break one’s chain of thought
but if the interruption is short, one can usually page in the system after some code review.
After an interruption of months or years, I frequently find myself referring to papers,
books, or notes in which I have documented my algorithms to refresh my memory of
what I previously coded.

I guess what I am saying is that good comments and documentation are a great benetfit to
the original system designers as well as others who have to maintain the code for long
periods of time. Brian maintained a log of major decisions we made as we designed the
language. I found his log invaluable.

Computer Science

What constitutes research in computer science?

Al: This is a wonderful question, and one that does not have a well-defined answer. I think
computer science research has broadened enormously in its scope. We still have the deep,
unsolved, quintessential questions of computer science: how do we prove that a problem like
factoring or an NP-complete problem is actually hard; how do we model complex systems
like a human cell or the human brain; how can we construct scalable, trustworthy systems;
how can programmers build arbitrarily reliable software; how can we make software with
human-friendly characteristics like emotion or intelligence; how far can we extend Moore’s
Law?

Today, the scale and scope of computing has exploded. We are trying to organize and
access all of the world’s information, and computers and computation are affecting all
areas of daily life. As a consequence, whole new areas of computer science research have
emerged in interdisciplinary applications combining computation with other areas of sci-
ence and human endeavor. Examples of these new areas include fields like computational
biology, robotics, cyberphysical systems. We don’t know how best to deploy computers in

114 CHAPTER SIX Download at Boykma.Com

education or health. Privacy and security have become more important than ever. I
believe computer science is as exciting a research field as any.

What is the role of math in computer science and programming?

Al: I think the best engineering is done on top of a solid scientific foundation. With AWK
we designed the language around a number of elegant abstractions rooted in computer
science theory, such as regular expressions and associative arrays. These constructs were
subsequently adopted by the major scripting languages: Perl, JavaScript, Python, and
Ruby. We also used efficient algorithms based on finite automata to implement the string-
matching primitives. All in all, I think AWK was a nice marriage of good theory and sound
engineering practice.

You worked on automata theory and its applications to programming languages. What
surprised you the most when you started implementing the results of your studies?

Al: Perhaps the greatest surprise has been its broad applicability. Let me interpret autom-
ata theory as formal languages and the automata that recognize them. Automata theory
provides useful notations, particularly regular expressions and context-free grammars, for
describing the important syntactic features of programming languages. The automata that
recognize these formal languages, such as finite-state machines and push-down automata,
can serve as models for the algorithms used by compilers to scan and parse programs. Per-
haps the greatest benefit of automata theory to compiling comes from being able to build
compiler-construction tools such as lex and yacc that automate the construction of effi-
cient scanners and parsers based on these automata.

What is preventing us from building a compiler (and/or a language) that identify all
potential bugs? Where is the line between the bugs linked to a wrong design of the
program and the bugs that could have been spotted or prevented if the language were
more proactive?

Al: Undecidability makes it impossible to design a compiler that will find all the bugs in
programs. We have, however, made great strides in creating useful software verification
tools employing powerful techniques like model checking to find important classes of bugs
in programs. I think the software development environment of the future will have a large
variety of verification tools that a programmer can harness to pinpoint many common
causes of bugs in programs.

My long-term vision is that through the use of stronger languages, more powerful verifi-
cation tools, and better software-engineering practices, software will improve in reliability
and quality.

How can we design pattern-matching algorithms that take advantage of concurrency in
multicore hardware?

Al This is currently an active research area. Many researchers are exploring parallel hard-
ware and software implementations of pattern-matching algorithms like the Aho-Corasick
algorithm or finite-state algorithms. Some of the strong motivators are genomic analyses
and intrusion detection systems.

Download at Boykma.Com AWK

115

What motivated you and Corasick to develop the Aho-Corasick algorithm?

Al The origin has a very interesting story behind it. I was working on the book The Design
and Analysis of Computer Algorithms [Addison-Wesley] with John Hopcroft and Jeffrey Ullman
back in the early 70s. I was giving a lecture at Bell Labs on algorithm design techniques.
Margaret Corasick from Bell Labs’s technical information libraries was in the audience. At
the end of my lecture she came to me saying she had written a bibliographic search pro-
gram for Boolean functions of keywords and phrases. However, on some complex
searches, running the program could exceed the $600 limit for searches.

Her initial implementation of the search program used a straightforward pattern-matching
algorithm. I suggested that she might look for the keywords in parallel using a finite
automaton, and that there was a way of efficiently constructing the pattern-matching
automaton in linear time from any set of keywords.

She reappeared in my office a few weeks later and said, “Remember that $600 program
search? I've implemented the algorithm you suggested. That search now costs $25. In fact,
every search now costs $25; this is the cost of reading the tape.” This was the birth of the
Aho-Corasick algorithm.

On learning this, my lab director, Sam Morgan said, “Why don’t you keep working on
algorithms? I think they’ll be useful sometime in the future.” That was the magic of Bell
Labs at the time: there were people with problems and people with unconventional ways
of thinking about those problems. When you brought these people together, amazing
inventions would result.

Breeding Little Languagdes

What hooked you on programming?

Brian Kernighan: I don’t really recall any specific event. I didn’t even see my first com-
puter until I was about a junior in college, and I didn’t really learn to program (in FOR-
TRAN) until a year or so after that. I think that the most fun I had programming was a
summer job at Project MAC at MIT in the summer of 1966, where I worked on a program
that created a job tape for the brand new GE 645 in the earliest days of Multics. I was writ-
ing in MAD, which was much easier and more pleasant than the FORTRAN and COBOL
that I had written earlier, and I was using CTSS, the first time-sharing system, which was
infinitely easier and more pleasant than punch cards. That was the point where the puzzle-
solving aspects of programming became really enjoyable, because the mechanical details
didn’t get in the way nearly so much.

How do you learn a new language?

Brian: I find it easiest to learn a new language from well-chosen examples that do some
task that’s close to what I want to do. I copy an example, adapt it to what I need, then

116 CHAPTER SIX Download at Boykma.Com

expand my knowledge as the specific application drives it. I poke around in enough differ-
ent languages that after a while they start to blur, and it takes a while to shift gears when
I shift from one to another, especially if they are not ones like C that I learned long ago.
It’s good to have good compilers that complain about suspicious constructions as well as
illegal ones; languages with strong type systems like C++ and Java are helpful here, and
the options that enforce strict conformance to standards are good, too.

More generally, there’s nothing like writing a lot of code, preferably good code that other
people use. Next best, though less frequently done, is reading a lot of good code to see
how other people write. Finally, breadth of experience helps—each new problem, new
language, new tool, and new system helps you get better, and creates links with whatever
you know already.

How should a manual for a new programming language be organized?

Brian: A manual should make it easy to find things. That means that the index has to be
really good, the tables of things like operators and library functions have to be concise and
complete (and easy to find), and the examples should be short and crystal clear.

This is different from a tutorial, which should definitely not be the same as a manual. T
think the best approach for a tutorial is a sort of “spiral,” in which a small set of useful
basic things is presented, but enough to write complete and useful programs. The next
rotation of the spiral should cover another level of detail or perhaps alternative ways of
saying the same kinds of things and the examples should still be useful but can be bigger.
Then put a good reference manual at the end.

Should examples—even beginner examples—include the error-handling code?

Brian: I'm torn on this. Error-handling code tends to be bulky and very uninteresting and
uninstructive, so it often gets in the way of learning and understanding the basic language
constructs. At the same time, it’s important to remind programmers that errors do happen
and that their code has to be able to cope with errors.

My personal preference is to pretty much ignore error handling in the earlier parts of a
tutorial, other than to mention that errors can happen, and similarly to ignore errors in
most examples in reference manuals unless the point of some section is errors. But this can
reinforce the unconscious belief that it’s safe to ignore errors, which is always a bad idea.

What did you think of the idea for the Unix manual to cite bugs? Does this practice make
sense today, too?

Brian: I liked the BUGS sections, but that was when programs were small and rather sim-
ple and it was possible to identify single bugs. The BUGS were often features that were not
yet provided or things that were not properly implemented, not bugs in the usual sense of
walking off the end of an array or the like. I don’t think this would be feasible for most of
the kinds of errors one would find in really big modern systems, at least not in a manual.
Online bug repositories are a fine tool for managing software development, but it’s not
likely that they will help ordinary users.

Download at Boykma.Com

AWK

117

Do current programmers need to be aware of the lessons you collected in your book about
programming style, The Elements of Programming Style [Computing McGraw-Hill]?

Brian: Yes! The basic ideas of good style, which are fundamentally to write clearly and
simply, are just as important now as they were 35 years ago when Bill Plauger and I first
wrote about them. The details are different in minor ways, to some extent depending on
properties of different languages, but the basics are the same now as then. Simple,
straightforward code is just plain easier to work with and less likely to have problems. So
as programs get bigger and more complicated, it’s even more important to have clean,
simple code.

Does the way you can write text influence the way you write software?

Brian: It might. In both text and programs, I tend to work over the material many times
until it feels right. There’s a lot more of this in prose, of course, but it’s the same desire, to
have the words or the code be as clear and clean as possible.

How does knowing the problems that software will solve for the user help the developer
write better software?

Brian: Unless the developer has a really good idea of what the software is going to be used
for, there’s a very high probability that the software will turn out badly.

In some fortunate cases, the developer understands the user because the developer is also
going to be a user. One of the reasons why the early Unix system was so good, so well
suited to the needs of programmers, was that its creators, Ken Thompson and Dennis
Ritchie, wanted a system for their own software development; as a result, Unix was just
great for programmers writing new programs. The same is true of the C programming
language.

If the developers don’t know and understand the application well, then it’s crucial to get
as much user input and experience as possible. It is really instructive to watch new users
of your software—within a minute, a typical newcomer will try do something or make
some assumption that you never thought of and your program will make their life harder.
But if you don’t monitor your users when they first encounter your software, you won’t
see their problems; if you see them later, they’ve probably adapted to your bad design.

How can programmers improve their programming?

Brian: Write more code! And then think about the code you wrote and try to rework it to
make it better. Get other people to read it too if you can, whether as part of your job or as
part of an open source project. It’s also helpful to write different kinds of code, and to
write in different languages, since that broadens your repertoire of techniques and gives
you more ways to approach some programming problem. Read other people’s code, for
example, to try to add features or fix bugs; that will show you how other people approach
problems. Finally, there’s nothing like teaching others to program to help you improve
your own code.

118 CHAPTER SIX Download at Boykma.Com

Everyone knows that debugging is twice as hard as writing the software, so how should
debugging be taught?

Brian: I'm not sure that debugging can be taught, but one can certainly try to tell people
how to do it systematically. There’s a whole chapter on this in The Practice of Programming
[Addison-Wesley], which Rob Pike and I wrote to try to explain how to be more effective
at debugging.

Debugging is an art, but it’s definitely possible to improve your skill as a debugger. New
programmers make careless mistakes, like walking off the start or end of an array, or mis-
matching types in function calls, or (in C) using the wrong conversion characters in printf
and scanf. Fortunately, these are usually easy to catch because they cause very distinctive
failures. Even better, they are easy to eliminate as you write the code in the first place, by
boundary condition checking, which amounts to thinking about what can go wrong as
you write. Bugs usually appear in the code you wrote most recently or that you started to
test, so that’s a good place to concentrate your efforts.

As bugs get more complicated or subtle, more effort is called for. One effective approach is to
“divide and conquer,” attempting to eliminate part of the data or part of the program so that
the bug is localized in a smaller and smaller region. There’s also often a pattern to a bug; the

“numerology” of failing inputs or faulty output is often a very big clue to what’s going wrong.

The hardest bugs are those where your mental model of the situation is just wrong, so you
can’t see the problem at all. For these, I prefer to take a break, read a listing, explain the
problem to someone else, use a debugger. All of these help me to see the problem a different
way, and that’s often enough to pin it down. But, sadly, debugging will always be hard. The
best way to avoid tough debugging is to write things very carefully in the first place.

How do hardware resources affect the mindset of programmers?

Brian: Having more hardware resources is almost always a good thing—it means, for
example, that one doesn’t have to worry much about memory management, which used
to be an infinite pain and source of errors 20 or 30 years ago (and certainly was when we
were writing AWK). It means that one can use potentially inefficient code, especially general-
purpose libraries, because runtime is not nearly as much of an issue as it was 20 or 30
years ago. For example, I think nothing today of running AWK over 10 or even 100 MB
files, which would have been very unlikely long ago. As processors continue to get faster
and memory capacities rise, it’s easier to do quick experiments and even write production
code in interpreted languages (like AWK) that would not have been feasible a few decades
ago. All of this is a great win.

At the same time, the ready availability of resources often leads to very bloated designs
and implementations, systems that could be faster and easier to use if a bit more restraint
had gone into their design. Modern operating systems certainly have this problem; it seems
to take longer and longer for my machines to boot, even though, thanks to Moore’s Law,
they are noticeably faster than the previous ones. All that software is slowing me down.

Download at Boykma.Com

AWK

119

What is your opinion on domain-specific languages (DSL)?

Brian: I worked on a lot of what are now most often called domain-specific languages,
though I usually called them “little languages,” and others refer to “application-specific
languages.” The idea is that by focusing a language on a specific and usually narrow
domain, you can make its syntax match the domain well, so that it’s easy to write code to
solve problems within that domain. There are lots of examples—SQL would be an
instance, and of course AWK itself is a fine example, a language for specifying certain
kinds of file processing very easily and compactly.

The big problem with little languages is that they tend to grow. If they are at all useful,
people want to apply them more broadly, pushing the envelope of what the original lan-
guage was meant for. That usually implies adding more features to the language. For
instance, a language might originally be purely declarative (no if tests, no loops) and it
might have no variables or arithmetic expressions. All of those are usetul, however, so
they tend to get added. But when they are added, the language grows (it’s no longer so lit-
tle), and gradually the language starts to look like any other general-purpose language,
but with different syntax and semantics and sometimes a weaker implementation as well.

Several of the little languages I worked on were for document preparation. The first, with
Lorinda Cherry, was called EQN, and was for typesetting mathematical expressions. It was
pretty successful, and as our typesetting equipment became more capable, I also did a lan-
guage for drawing figures and diagrams, which was called PIC. PIC started out only able to
draw, but it rapidly became clear that it needed arithmetic expressions to handle computa-
tions on coordinates and the like, and it needed variables to store results, and it needed
loops to create repetitive structures. All of these were added, but each one was kind of
awkward and shaky. In the end, PIC was quite powerful, a Turing-complete language, but
one wouldn’t want to write a lot of code in it.

How do you define success in terms of your work?

Brian: One of the most rewarding things is to have someone say that they used your lan-
guage or tool and found that it helped them get their job done better. That’s really satisty-
ing. Of course it’s sometimes followed by a report of problems or of missing features, but
even those are valuable.

In which contexts is AWK still powerful and useful?

Brian: AWK still seems to be best for quick and dirty data analysis: find all the lines that
have some property, or summarize some aspect of the data, or make some simple transfor-
mation on it. I can often get more done with a couple of lines of AWK than others can
with 5 or 10 lines of Perl or Python, and empirically, my code will run almost as fast.

I have a collection of small AWK scripts that do things like add up all the fields in all the
lines or compute the ranges of all fields (a way to get a quick look at a dataset). I have an
AWK program that fills arbitrary text lines into at most 70 character lines that I probably

120 CHAPTER SIX Download at Boykma.Com

use 100 times a day for cleaning up mail messages and the like. Any of these could be easily
written in some other scripting language and would work just as well, but they’re easier in
AWK.

What should people keep in mind when writing AWK programs?

Brian: The language was originally meant for writing programs that were only one or two
lines long. If you're writing something big, AWK might well not be the right language,
since it has no mechanisms that help with big programs, and some design decisions can
lead to hard to find bugs—for example, the fact that variables are not declared and are
automatically initialized is very convenient for a one-line program, but it means that spell-
ing mistakes and typos are undetectable in a big program.

Designing a New Language

How would you go about creating a new programming language?

Brian: Presumably you have some set of tasks, some domain of application, for which you
think a new programming language would be better than any existing language. Think
about what people want to be able to say. What are the problems, the applications, that
this programming language is going to be used for? How would you like to express them
in that language? What would be the most natural way to write them down? What are
the most important examples, the simplest ones that would get somebody started? Try to
make those as straightforward as possible.

Fundamentally, the idea is to try to write things in the language before it exists. How
would you say something? I think this applied to AWK pretty well because everything in
the design of that language was intended to make it easy to write useful programs without
having to say very much. That meant we didn’t have declarations, partly because we
didn’t have types. It meant that we didn’t have explicit input statements because the input
was completely implicit, it just happened. It meant that we didn’t have statements for
splitting input lines into fields because that happened automatically. All the properties of
the language came from the goal of trying to make it really easy to say really simple
things.

The standard examples that we used in the AWK paper that we wrote originally, and in
the manual and so on, were all basically one-liners. I want to print all the lines that have
length greater than 80 characters, so by writing "length > 80", I'm done. In that particular
language, it was clear enough what we were trying to do, and then of course later on you
discover all the things that you left out that you really need, like the ability to read from
specific input files by name, so we had to add that. Constructs that were needed when
programs got longer than a few lines, like functions, were added later.

The EQN language that Lorinda Cherry and I worked on is a completely different exam-
ple. EQN is a language for describing mathematical expressions so they could be printed.

Download at Boykma.Com AWK

121

122

CHAPTER SIX

The goal was to make the language as close as possible to the way that people would speak
mathematics out loud. If I were to try to describe the formula to you over the telephone,
what would I say? Or if I were writing a formula on the blackboard in a class, what would
I be saying as I wrote the expression on the board? Or in my case, I was recording text-
books for blind people. How did I read the mathematical expressions so that somebody
who couldn’t see them might be able to understand them? EQN was entirely focused on
making it easy to write mathematics as it was spoken, and it didn’t worry much about the
quality of the output. Compare that to TeX, which is not as easy to type, with a lot of syn-
tax, but it is a very powerful language that gives you far more control over the output, at
the price of being rather harder to use.

When you designed the language, how much did you think about the implementation?

Brian: A fair amount, because I've always been involved with both design and implemen-
tation; if I can’t see how to implement something, I won’t pursue the design.

For almost every language I have done, either the language has been simple enough that
it could be parsed by a straightforward ad hoc parser, or if it had a richer syntactic struc-
ture, I've been able to use yacc to specify the grammar.

I think if I had had to do languages like EQN or AWK without the benefit of yacc, they
would never have happened, because it’s too hard to write parsers by hand. Not that you
can’t do it, but it’s a real nuisance. Writing them with a tool like yacc made it possible to
do interesting, adventurous things easily and change the design quickly if something
didn’t seem to be right, because all you had to do was rewrite a bit of the grammar; you
didn’t have to change any significant amount of code to make a substantial change in the
language, or to add some new feature. It was really easy with a tool like yacc, and would
have been much harder with a conventional recursive descent parser.

Should language designers enforce a preferred style to avoid some recurrent mistakes?
For example, Python’s source code formatting, or Java’s lack of pointer arithmetic.

Brian: I have mixed feelings about that, though mostly the enforced discipline is helpful
once one gets used to it. I found Python’s indentation rules irritating at first, but once I got
used to them, it was not a problem.

One should try to design the language so that it has the right constructs to make it easy for
people to say what they want to say, and there isn’t ambiguity or too many different ways
to say it. No matter what, people will find the most natural way of expressing things. So if
Java omits pointers, that’s a major change from C or C++, but it provides references, which
are a reasonable alternative for many situations. Java doesn’t provide a goto statement.

Download at Boykma.Com

I've never felt that that was a problem. C provides a goto statement that I don’t typically
use, but every once in a while, it makes sense. So I'm comfortable either way with those
kinds of decisions.

I mentioned the PIC language for drawing pictures. It was good for simple pictures like
arrows and boxes and flowcharts. But people wanted to draw pictures with regular struc-
tures. For those, I somewhat reluctantly added a while loop and a for loop and even an if
statement. Of course, they were an afterthought, with somewhat irregular syntax that
didn’t quite fit the PIC language, but they were not the same as in any conventional lan-
guage, either. The result was useful but awkward.

It seems that the language starts out simple, and then it grows, and additions gradually
make it take on all of the character of a full-blown programming language with variables
and expressions, and the if statements and while loops and functions that any full-blown
programming language has. But usually the constructions are sort of awkward, the syntax
is irregular or at least different, the mechanisms may not work very well, and the whole
thing feels wrong.

Was this due to their genesis as little languages, without consideration of evolving them
into general-purpose languages?

Brian: Yes, I think that’s what it is. I'm speaking only for myself on this, but the mental
picture that I have started out with is almost always a little language, something very
small and simple, not meant to do big things, not meant to be a general-purpose program-
ming language. But if it’s useful, people start to push its limits and they want more. And
typically the things they want are the features of general-purpose programming languages
that make them programmable rather than just declarative. They want ways to repeat
things, they want ways to avoid having to say the same thing over and over again, and
these lead to loops and macros or functions.

How can we design a language that works for everybody? You mentioned little languages
that are focused on a particular goal, but | also have the impression that you like the idea
that a developer writes a language to satisfy his own needs. Once you have something
that works, how can you grow it to make it more useful to other people?

Brian: There isn’t likely to ever be a language that is satisfactory for everybody for every
application or even relatively large groups with large collections of applications.

We have a lot of good general-purpose languages now. C is fine for some jobs; C++, Java,
Python—each does a good job in its area and can be pushed into almost all the other areas.
But I don’t think I would try to write an operating system in Python, and I don’t want to
write text-processing code in C anymore.

Download at Boykma.Com

AWK

123

How do you recognize the area where a language is particularly useful or strong? For
example, you said Python is not good to write an operating system. Is that particular to
the language or the implementation?

Brian: I think it’s probably both. The implementation is likely to mean that things would
be too slow. But if I were writing a toy or demonstration operating system, Python might
be absolutely fine. It might in some ways be better. But I don’t think I would write an
operating system that would support, let’s say, Google’s infrastructure, using Python.

Real programmers don’t have the luxury of choice sometimes. They have to do whatever
the local environment requires. So if I am a programmer at a big financial operation on
Wall Street, they will be programming in a particular language or a very small set of lan-
guages, perhaps C++ and Java. I am not going to be able to say, “Oh, I just want to write
C,” nor am I going to be able to say, “Well, I think Python would be better for that.” In one
company I know, the set of languages is C++, Java, and Python. Ruby might really be bet-
ter for some things, but you're not going to write Ruby. A lot of people don’t have a free
choice in what they write.

On the other hand, if they have to do a particular job, the choice might be free among
C++, Java, or Python. Then the technical considerations could be evaluated in deciding
which one to use.

Maybe everybody should have a personal language.

Brian: One that’s really their own and nobody else uses?

Where everyone has a personal syntax that is translated to a general byte code, and then
it’s universal.

Brian: It’s going to make it hard to do collaborative development. :)

After you built the first prototype, what should people do?

Brian: First try to write code yourself in this proposed language. What does it feel like to
write the kinds of things that you personally want to write and that you think people
around you would probably want to write? For EQN, it was crystal clear. How do mathe-
maticians speak? I'm not a mathematician, but I had a pretty good idea because I'd taken a
lot of math courses. You want to use it yourself and then, as quickly as possible, you want
other users to try it, but you want users who are going to be really good critics, that is,
people who will try it, push it, and tell you what they found.

One of the wonderful things about Bell Labs in the 70s and 80s was that there were a
bunch of people in and around the Unix group who were just incredibly good at this
kind of critical evaluation of what other people did. The criticism was often very blunt,
but there was good feedback, very quickly, about what was good and what was not.

124 CHAPTER SIX Download at Boykma.Com

We all protfited from that because the criticism helped smooth off the rough edges, kept
systems culturally compatible, and weeded out the really bad ideas.

I think it’s harder to get that in some ways now. You can get criticism from a broader col-
lection of people more widely distributed because of the Internet, but you may not get as
focused criticism from a group of people who are extremely talented with whom you are
very close, where you could meet them in the hall on an hourly basis, where you step out
of your office and into their office.

How did you manage all your ideas and experiments, and at the same time, build a
unique and stable system?

Brian: It wasn’t that hard because AWK was so small. The first version was only perhaps
3,000 lines of code. I think Peter Weinberger wrote the first version. The grammar was
done with yacc, which was very easy. The lexical part was done with lex. And semantics
at that point were pretty regular. We had several different versions of the interpreter
machine, but it wasn’t very big. It was pretty easy to make changes quickly and maintain
control of it. And in fact it’s still quite small; the version that I distribute is not much over
6,000 lines at this point, 30 years later.

Is it true that each one of you had to write test modules for every new feature that you
wanted to include?

Brian: No. Absolutely not. About the time the book was published in 1988, we started to
be more systematic about collecting test cases. It was probably some years after that when
Istarted to be more orderly in collecting tests, and somewhere in that period I decided that
if I added a feature, I was going to add a few tests that would make sure that feature actu-
ally worked. I have not added new features for quite a while, but the collection of tests has
continued to grow because when somebody finds a bug, I add a test or two that would
have found the bug earlier and make sure that it doesn’t come back again.

I think that’s good practice. It’s something that I wish we had done more carefully and
systematically much earlier in the game. The test suite today includes essentially all of the
programs in the first and second chapters of the AWK book. But those obviously came
after the book, which was well after the language itself.

In the past 40 years, there has been a lot of research in computer science and also on
programming languages. Have you seen any improvement in the language design part
beyond tool improvements?

Brian: I'm not sure I know enough to give a proper answer on that. For some languages,
let’s say scripting languages, the language design process is still pretty idiosyncratic based
on the preferences and interests and beliefs of the language designer. So we have dozens
of scripting languages, and I don’t think that those have profited directly from research in
things like type theory.

Download at Boykma.Com AWK

125

In the 70s, every type of language was available: C, Smalltalk—very different types of
languages. Today we have a very different range of languages, but we still have C, C++,
and Smalltalk. Did you expect more innovation and improvements in the way we design
languages and interact with computers?

Brian: I guess I don’t know enough about the whole area. I think probably we will get
better at getting the machine to do more of the work for us. That means that languages
may become even higher level and more declarative so that we don’t have to spell out so
many details. One hopes that the languages will become more safe, so that it’s harder to
write programs that don’t work. Perhaps languages that will be easier to translate into a
very efficient runnable form. But beyond that, I honestly don’t know.

Can we have a science of language design? Can we approach the language design with a
scientific method so that we can learn from the previous discoveries or inventions and
keep improving? Will it always include the designer’s personal taste?

Brian: I think that there’s always going to be a very large amount of personal taste and
intuition about what works in language design. Almost all languages are really the product
of one or two people, maybe three. There’s hardly any language you can name that was a
group effort. And so that just says it’s likely to be personal.

At the same time, our understanding of almost every aspect of programming languages is
better and is likely to continue getting better. That suggests that new languages will be
based on sound principles, and their properties will be mostly well understood. And in
that sense, it will be more scientifically based than might have happened say 10 or 20, well
certainly 30 years ago, where things really didn’t have much basis. But I will guess that
much language design will still be determined by individual taste.

People are going to come up with things that appeal to them, and some of those will
appeal to lots of other people as well. But there will be more and more things that a lan-
guage has to have because their existence will be taken for granted. So, for example, any
significant language today is almost surely going to have some kind of object mechanism,
and it will be designed into it from the beginning, not glued on afterward. Concurrency is
another important area, because we're getting machines that have lots of processors, and
languages will have to deal with concurrency in the language itself, not just some library
add-on.

As we understand the situation better, we try to build systems that are always bigger, so in
some ways we are more powerful, but we always try to set the bar higher. We keep
building bigger teams.

Brian: I think your basic observation is absolutely correct. We're always trying to do big-
ger things, so we're always up to our armpits in alligators. As we get more hardware, as
we get more understand of how to write programs, as we get better programming lan-
guages, we take on bigger things. Tasks that in the 1970s might have taken a team of a
couple hundred people a year or two to build can today be knocked off by an undergradu-
ate in a couple of weeks because there’s so much support, so much infrastructure, so

126 CHAPTER SIX Download at Boykma.Com

much horsepower also in the computers, and so much existing software that you can
build on. So I think in some sense we’'re always going to be up against that.

Are we going to have big teams like the thousands that Microsoft had working on Vista?
Probably, but we’re clearly going to need to find ways to make big projects into a bunch of
small projects that cooperate with each other in a safe and well-organized way.

Some of this will require improvements in languages, and some of it will require better
mechanisms for gluing together components no matter what languages they were written
in, and for packaging information as it passes across interfaces.

Previously you said that a modern programming language should absolutely support
OOP. Is OOP good as it is? Is there anything else that we could try to do or invent or add
to simplify the process of building large systems?

Brian: Object orientation is very useful in some settings. If you're writing Java, you have
no choice; if you're writing Python or C++, you can use it or not. I think that’s probably
the right model: you can use it or not use it depending on the specific application. As lan-
guages evolve, there will surely be other mechanisms for packaging up computational
units and organizing a program.

If you look at COM, Microsoft’s component object model, that’s based on object-oriented
programming, but it’s more than that because a component is a bunch of objects, not just
one. How do you deal with that in a somewhat more orderly way than perhaps COM pro-
vides so that there’s more of a notion of how these things are related?

We need mechanisms to deal with huge numbers of objects. We're dealing with quite
complicated structures of objects, as we deal with bigger programs or programs whose
pieces come from more places.

Unix takes the C language that didn’t have any OO support, and then you build
components—objects—as little tools easily combined to build complex features. Instead
of putting the concept of objects inside the language, perhaps we should build objects or
components that are little tools as separate programs. If you think of a spreadsheet
program, generally that’s a huge program built with objects, maybe it supports plug-ins or
add-ons, but the idea is that the objects are inside, integrated, and managed with the
language.

Brian: Excel is a fine example because it packages up a huge number of objects and their
associated methods and properties. You can write code that will control Excel, so in effect,
Excel becomes a giant subroutine, or just another computational unit. The plumbing isn’t
quite as neat as it is with, say, a Unix pipeline, but it could be pretty close and would not
be very hard to have Excel be part of a pipeline.

Mashups have some of that flavor: there are large building blocks that can be glued
together in ad hoc ways. It’s not quite as easy as a Unix pipeline, but it’s the same idea of
combining large, self-contained pieces into larger systems.

Download at Boykma.Com

AWK

127

Yahoo! Pipes is a nice example. It is a really interesting approach to saying, “How can we
take fairly complicated operations and glue them together?” They put a beautiful graphical
front end on the whole thing, but you can imagine doing the same with text-based mech-
anisms, and thus having a system that would let you put together arbitrary collections of
computations just by writing text-based programs again. Figuring out how to do this well
is definitely something that’s worth working on. How do we effectively build systems out
of existing components and how do we get programming languages to help us do it?

During the command-line era, you had to communicate with the computer using written
language: enter text as input and read text as output. Today we interact with the keyboard
but also the mouse, and we get partially ¢raphical and partially textual output. Is the best
way to communicate with a computer still a language? Was the command line in some
way a better way to communicate because of the use of language?

Brian: Graphical interfaces are very good for unskilled users, for users who are new to
some system, or for applications that you don’t use very often or that are intrinsically
graphical, like creating a document. But after a while, you find yourself doing the same
thing over and over and over again. Computers are great at repetive operations. Wouldn’t
it be much nicer if we could say to the computer: do this over and over again?

There are mechanisms for that right now, such as macros in Word or Excel. But we’re see-
ing programmable APIs for systems like Google or Yahoo! or Amazon or Facebook. You
can take whatever operations you might have been doing with your keyboard and mouse,
and you can mechanize them. And you can do it without the screen scraping and HTML
parsing that you had to do 10 years ago.

In effect, that’s going back to the command line, where pure text-based manipulation is
best. You may not know what you want to do until you’ve done some of the mouse and
keyboard-based operations, but once you start to see the repetitive operations, then the
command-line interface and these APIs mechanize the process rather than requiring a
human being in the loop.

When designing the language, do you consider the debuggability of features? One
critique of AWK is that variables are automatically initialized without declaration. This is
convenient, but if you make spelling mistakes or typos, it can be very hard to find
problems.

Brian: It’s a tradeoff. Every language has tradeoffs, and in AWK we made tradeoffs in the
direction of making it really, really easy to use. A one-line program was the goal, because
we thought that most programs would only be one or two lines long. Variables that
weren’t declared and had automatically initialized values were consistent with that,
because if you had to declare it and initialize it, you tripled the size of the program. That
worked beautifully for small programs, but is bad for big programs. So what might you do?

128 CHAPTER SIX Download at Boykma.Com

Perl has a mode that warns you; it says, “Tell me when I've done something stupid.” You
could be more careful the way that Python does. You do have to initialize variables in
Python, but you can usually get away without much declaration. Or you could have some
separate tool off to the side, a lint for AWK programs that would say, “You have two vari-
ables whose names are extremely similar; did you really mean that?”

A more dubious design decision in AWK is that concatenation was expressed by adja-
cency, without an explicit operator; a sequence of adjacent values is just concatenated. If
you couple that with the fact that variables aren’t declared, nearly anything you write is a
valid AWK program. It’s just too easy to make mistakes.

I think that that’s an example of stupid design. It didn’t save us anything—we should have
used an operator. Automatically initialized variables was a conscious design tradeottf,
which works beautifully for little things and doesn’t scale.

Legacy Culture

Suppose | write a new little language that has to run in two megabytes of memory, for a
cell phone or embedded device. To what degree do issues of implementation like that
affect the interface level? When a user uses my program, is he or she going to understand
some of my design choices, or have we moved away from those types of limitations now?

Brian: I think we're a lot more away from it than we used to be. If you look at the history
of early Unix programs, and certainly AWK among them, you can see lots of places where
the fact that memory was extremely tight showed up in the language or various pieces of
the operating system.

For example, for many years AWK had internal limits: you could only have this many files
open, only have this many elements in an associative array, and so on. They were all cop-
ing with the fact that memory was really tight and processes weren’t all that fast. Those
constraints have gradually gone away. In my implementation, there are no fixed limits
anymore. Fixed limits are a place where resource limitations bubble up and become visible
to the ultimate user.

AWK tries to preserve the state of a variable so that if a variable has been used as a num-
ber and then is coerced to a string for printing, AWK knows that both the numeric value
and the string value are current so it doesn’t have to do the coercion again. In a modern
machine running 1,000 times faster, you wouldn’t do that at all. You would just coerce
the value when it was needed.

Even originally, it was probably a silly thing to do, since there’s a lot of intricate code, very
delicately balanced and probably not always correct, to manage this state. If I were doing it
today, I wouldn’t think about it at all. I'm sure if I run Perl or Python, they’re not worry-
ing about that.

Download at Boykma.Com

AWK

129

130

CHAPTER SIX

Perl 5 still uses that trick, oddly enough.

Brian: The first version of Perl was written less than 10 years after AWK, and there were
still plenty of resource constraints. Anyway, those are examples of things where tight
resources forced you to do things that, in retrospect, you would probably do differently.

I started out on machines that had, if I remember correctly, 64k bytes total. That was
when we were well into the Unix world.

Peter Weinberger said that in the early Unix days there was always a sense that you could
rewrite a program next year. It didn’t have to be perfect because it wasn'’t big or
complicated. You could always rewrite it. Was that your experience?

Brian: Programs did get rewritten a fair amount. I don’t know whether they got rewritten
from scratch. In my own experience, I don’t think anything I ever did got rewritten in the
sense of just toss it away and start over again. My changes were more incremental, but
there was a lot of rethinking, and it definitely was part of the culture to see if there were
ways where you could make the program smaller.

He gave me the impression that this was a cultural thing. The design consideration was
never that a program would last for 10, 20, or 40 years. Did you see a shift from short-term
to long-term thinking?

Brian: I don’t know whether anyone thinks long term in software today, but some people
did in the early days. Some people do because they have to. If, for example, I was in a tele-
phone company making switching software, in the good old days that code was going to
last for a long while and it had to be compatible with the code that was there before. You
had to do things more cautiously. Maybe we were just more realistic about the fact that
you can’t rewrite it. There isn’t enough time.

The other thing, at least in my memory of the Unix of the 70s, was that there were so
many interesting new things to do that people just went in and kept changing programs. I
don’t think anybody thought of themselves as writing for the ages. If you had told Al or
Peter or me in 1978 that we would be having conversations about AWK 30 years later, we
would not have believed it.

The Unix kernel has really evolved. Many people may wish otherwise, but the C language
is still one of the best options for software like AWK and kernels. Why do things like this
survive when other things don’t?

Brian: Partly the survival is because they’re really good at what they do. C found a sweet
spot for system implementation. It’s incredibly expressive, but at the same time, it’s not
complicated or big, and it’s efficient, and that’s will always matter at some level. It’s a nice
language to work with because if you want to say something, there aren’t too many differ-
ent ways to say it. I will look at your code and say, “I see what you are doing.” I don’t
think that’s true of languages like Perl and C++. I'll look at your Perl code and I'll say
“Huh?” because there’s no one way to write it.

Download at Boykma.Com

C++ is big and intricate and there are many different ways that you can say something. If
you and I were writing C++, we might come up with rather different ways to express a big
computation. C doesn’t have that. C survives because it found the right balance of expres-
siveness and efficiency, and for core applications, it’s still the best tool.

That’s why we’ve never replaced the X Window system on Unix. Everything uses Xlib or
something that uses Xlib. Baroque as Xlib may be, it’s pervasive.

Brian: Exactly. It does the job. It does it well enough. To do it over from scratch is just too
big a job.

When you look at C++ now, one of the original design goals was backward compatibility
with C, for good or ill. The theory goes if you want to replace X, then we need something
that can run X program strings transparently. C++ did not displace C in a lot of places,
though it had that nominal goal.

Brian: Bjarne killed himself to try and make it compatible with C as much as he possibly
could. One of the reasons that C++ succeeded where other languages did not is that com-
patibility was good, both source and object, and that meant that you didn’t have to buy in
to a whole new way of doing business to use C++ in a C environment.

I'm sure those decisions that Bjarne made on compatibility have come back in some ways
to haunt him just because people say, “Oh, it’s awful because....” He made them very con-
sciously and after a lot of thought because the compatibility with the existing world was
important, and it was more likely to succeed in the long run.

Some of its biggest sins are that it hews too closely to C.

Brian: Perhaps, but the further from C, the less likely it would have succeeded. It’s a diffi-
cult balance, and I think he did a very good job.

To what degree can you pursue backward compatibility versus trying to introduce
something new and revolutionary?

Brian: That’s a dilemma in absolutely every field, and I don’t see any way out of it.

You mentioned that a lot of little languages started adding features and becoming Turing-
complete and losing their conceptual purity. Are there design principles to apply if you're
taking a little language and making it more general purpose without losing its way?

Brian: I guess. I remember saying that on a variety of occasions, and I often wondered
how much of it was a parochial view. That is, all of the languages I had touched had this
property and maybe nothing else did. Perhaps I was just seeing my own problem. In hind-
sight, in most cases I would’ve been better off to be sure that new features were syntacti-
cally compatible with existing languages so that people didn’t have to learn a brand-new
syntax.

Download at Boykma.Com AWK

131

132

CHAPTER SIX

Is there or will there be a resurgence of little languages?

Brian: I'm not sure that “resurgence” is the right word, but little languages will continue
to be developed.

What might drive this to some degree is the proliferation of APIs for web services. Every-
body has an API that will let you drive their web service from a program rather than from
your fingertips. Most of those are, at this point, packaged as JavaScript APIs, but I can
imagine ways in which they would be more accessible and run from Unix or Windows
command lines rather than writing JavaScript that sits inside a browser, where you still
have to click to get it started.

It almost sounds like you're talking a resurgence of the Unix command line that operates
on the Internet as a whole.

Brian: That’s a great way of saying it. Wouldn’t that be neat?

Transformative Technologies

You mentioned that yacc made experimentation with the syntax of a language easier,
because you could update your grammar and run that again, rather than tweaking a
hand-rolled direct descent parser. Was yacc a transformative technology?

Brian: Certainly for language development, yacc was an enormous influence. Speaking
personally, I would never gotten off the ground doing language work without it, because
for whatever reason, I wasn’t any good at writing recursive descent parsers. I always had
trouble with precedence and associativity.

With yacc you didn’t have to think about that. You could write down a grammar that
made sense, and then you could say “This is the precedence and the associativity, and
here’s how you handle ugly cases like unary operators that are spelled the same as binary
operators.” All of those things were so much easier. Just the existence of that tool made it
possible to think about doing things from a language point of view that otherwise would
have been too hard.

Certainly, yacc worked extremely well for EQN. The grammar was not very complicated,
but it had weird constructs. Some of them had not been thought of in a programming lan-
guage context before, and in fact EQN was declarative, not procedural. There was even
discussion of it in CACM at some point—the trickiness of putting subscripts and super-
scripts on the same entity, which could be handled well in a yacc grammar and was very
hard to do other ways.

yacc was an amazing piece of work from the theoretical standpoint—that is, taking this
language technology, this understanding of how to parse things and converting it into a
program—but it was also extremely well engineered, much better than anything else from
that time. For a long time, nothing came close to the engineering that yacc provided.

Download at Boykma.Com

lex had some of that same property, but somehow didn’t take off to the same degree,
probably because it’s easier to roll your own lexical analyzers. In AWK we originally had a
lex lexical analyzer, but as time passed, I found it hard to support in different environ-
ments, and so I replaced it by a handcrafted C lexical analyzer. That was the source of all
the bugs in the program for years afterward.

Did other technologies beside lex and yacc make it simpler or easier or more powerful to
develop languages or programs?

Brian: After that, having Unix as the operating system underneath meant that all kinds of
computing tasks were easy. The ability to create shell scripts, the ability to run a program
and capture its output, think about it, perhaps edit and make it into something different,

at a time when machines were slow—these made quite a difference. Overall, having these
tools around, and especially core ones like sort, grep, and diff, made it possible to see what
you were doing and keep track of little pieces.

I can’t imagine compiling programs without Make, but of course I can’t imagine a world
without patch either, and that was ’86 or ’87.

Brian: Until I started teaching, I never used patch because I never wrote anything that
was so big that patching made more sense than just having the whole source. I decided a
few years ago that students in my class ought to know something about patch because
that’s the way so much code, especially in the Linux world, is shipped around. One of the
assignments in my class asks the students to download my version of AWK from the Web,
add a specific feature like repeat until, invent some tests and run them with shell scripts,
and then send us the patch file. It gives them the whole experience of going to some open
source program, fiddling it in a minor way, and sending it back. I had never thought of
using patch. I used to get them to send me the source.

It’s easier to review in patch form.

Brian: I guess that’s the other thing. Patch files are much more compact and you can see
what they did much more quickly.

You brought up testing. Would you write code differently now to facilitate unit testing?

Brian: For the kind of programs that I have written over the years, unit testing doesn’t
make much sense because the programs themselves are too small and they’re self con-
tained. The idea of a unit test, a bunch of little “call this function and see what it does”
inside a fake main for testing, makes no sense for these programs, so I do not do unit test-
ing at that level. I've tried it in my class a few times and it has failed miserably.

For small programs, I prefer to do end-to-end black-box testing. Make up a bunch of test
cases, usually a form of a very specialized little language, and then write a program that
will run the test cases automatically and report the things that don’t work. That’s good for
bits and pieces of AWK; that’s excellent for regular expressions. It’s fine for Base64 encod-
ers and decoders, which I sometimes ask students to do. For all of those things, I do out-
side testing, not inside testing. I don’t put things inside the program for testing.

Download at Boykma.Com AWK

On the other hand, one thing that I would do ditferently today is to make it easier to do
internal consistency checking, with assertions and sanity-checking functions, and maybe
more test points or ways to get internal state out to the outside without having to work

too hard, rather like the built-in self-test that the hardware people do.

That sounds almost as much like debugging code as it does testing code. Maybe there’s no
sharp difference between the two.

Brian: The idea of assertions, for me, is that you're pretty sure that something is right at
this particular point, but you're not absolutely sure, so you put on a parachute to make
sure that if things fall apart, you can land safely. That’s a badly mixed metaphor. Asser-
tions and sanity checks are useful because if something goes wrong, your debugging will
be far easier because you know where to start probing to figure out what was wrong. It
also tells you what kind of test that you probably should have had that you didn't.

I once tried to get my students to build an associative array class that was basically the
same idea as the associative arrays in AWK. They were writing it in C, which meant that
the string handling was the place where things would usually go wrong. When I was writ-
ing my own version, I wrote a separate sanity-checking function to go through the data
structures and make sure that the number of elements that you got by counting on the
inside of the data structure was the same as you got from dead reckoning on the outside.

I guess it’s like versions of malloc that check the arena before and after every transaction.
The checking says, “If I'm going to go wrong, this is the place where it’s going to happen,
so let me just make sure.” I would do much more of that.

Is that partly because of your maturity as a developer that you’ve seen the kind of bugs
that can create, or because it’s a lot less expensive to do that?

Brian: I don't think I could claim maturity as a developer. I write less code than I would
like almost all the time and when I do, it’s often shoddy, in spite of what I say. It’s more
like “Do as I say, not as I do.”

Our editor heard you praise both Tcl and Visual Basic at a conference once. What do you
think of those languages now?

Brian: In the early 90s, I did extensive Tcl/Tk programming. I really understood it inside
and out, and I wrote some systems that were at least briefly used inside Bell Labs. I could
make interfaces very fast. Tcl/Tk is a wonderful environment for building user interfaces
and a vast improvement over all its successors.

Tcl as a standalone language is somewhat idiosyncratic. It was good at what it was meant to
do, but it was unusual enough that I think a lot of people had trouble with it, and it might
have disappeared if it were not for Tk, which is great for building interfaces.

Visual Basic in its early days was a nice language and environment for writing Windows
applications. At one point, VB was one of the most popular programming languages around.

13% CHAPTER SIX Download at Boykma.Com

It was so easy to get graphical interfaces up and running, so in the Windows world it was
doing the same thing as Tk was doing in the X11 Unix world, a way to build interfaces
quickly. Microsoft has slowly killed Visual Basic, and at this point, I wouldn’t use it for
anything new. C# would be the natural choice.

What's your feeling on when you can drop a feature or an idea and ask people to
upgrade to a new version?

Brian: Unfortunately, that’s one of those things where there is no right answer; no matter
what, somebody will be unhappy. If it’s my program, then I want people to follow me,
and if it’s somebody else’s program, then I want them to maintain whatever purely idio-
syncratic construct I've been using. I've been on both sides of this. One of the sore points
for me for many years has been the different versions of AWK that came from Bell Labs.
Al, Peter, and I had one, and there was a variant called NAWK from another group. They
wanted to evolve the language differently, and so we wound up with two somewhat
incompatible versions.

That’s a consistent opinion. The question is “What makes your life easier?” If getting rid of
a feature that is hard to maintain or hard to explain makes it easier for you to maintain a
program long term, that’s certainly one aspect. If upgrading to a new version of the
program makes you rewrite a bunch of code, that’s a different kind of angst.

Brian: In some settings it can be managed. Microsoft for example, had a conversion wiz-
ard that would take VB 6 into VB.NET. The early version of that wizard was not really up
to the job, but the newer versions got a lot better and so, at that point, it became more of a
feasible operation.

To what degree should a designer consider an elegant interface a prime goal of an
implementation? Is that always something to keep in the forefront of your mind, or does it
depend on your other goals?

Brian: If it’s a programming language, you have to think about how people are going to
write programs. What programs are they going to write? You want to have tried many
examples yourself before you freeze it. If it’s an API, then you really have to think about
how people are going to use that API and how it handles difficult questions like who owns
what resources.

Michi Henning wrote a very nice article about API design in the May 2007 issue of ACM
Queue, an article that I reread before I try to talk about APIs in class. One of the points he
makes is that APIs are more important now, because there are more of them and they’re
dealing with more complicated functionality.

Web service APIs are examples. For example, the API for Google Maps is quite big now. I
don’t remember it being that big when I first played with it three years ago; it seems to
have grown. It’s well done, as far as I can see. Other interfaces are less easy to use. Getting
those right is hard work. Then of course, if you change your mind, what do you do?

Download at Boykma.Com

AWK

You can have a flag day where you upgrade all your servers.

Brian: Or you change a bunch of names so it’s upward compatible?

Is that something you can evolve? Was it Stuart Feldman who said, “I can’t change the
tabs in Make—I have 12 users!”?

Brian: Right. That’s one of the awkward points about Make, and I'm sure Stu is just as
unhappy with it now as he was then. It’s very hard to change once you get real users.
Joshua Bloch gives a talk about API design where he says, “APIs are forever.” Once you've
donme it, it’s hard to change. You can sometimes do converters. We talked about the VB
converter. Mike Lesk changed TBL long ago. Tables used to be done by columns and he
decided it was better by rows, so he wrote a converter. It didn’t do a perfect job, but it was
enough that you could take an existing table and map it to the new one. That approach
helps for some things. There’s an AWK-to-Perl translator that does a pretty limited job,
but it’s enough to get you off the ground.

If there’s one lesson you've learned over the years of your experience, what is it?

Brian: Think really hard about what you’re doing, but then keep playing with it and try-
ing it and keep revising it and fixing it up until you're satisfied. Don’t ship the first thing
you did.

With some systems you get the feeling that somebody sent out their first version. You
know from publishing that that just doesn’t fly. Consider a genius like Beethoven. His
manuscripts are a mess. Mozart was probably the only composer who could write music
down perfectly the first time.

There’s a real line between the staggering work of once-in-a-millennium genius and the
rest of us.

Brian: In Isaac Asimov’s autobiography, he said that he just wrote the words down and
then published it, and most of his writing was actually pretty decent. He said he never
rewrote, and that’s fine for him, but I don’t think that that’s the norm.

On the wall of a room here at the university, there is a poem by Paul Muldoon that
reminds me of the Beethoven manuscripts. There is endless scratching out and reworking
and writing over again, all on one piece of paper; somebody framed it and put it on the
wall as a reminder of how hard it is to do things right the first time. Programming is the
same. Don’t ship the first thing you write.

136 CHAPTER SIX Download at Boykma.Com

Bits That Change the Universe

Is it true that the beginning of AWK was a discussion that you had with Al Aho about
adding a parser for extensible languages to your database project?

Peter Weinberger: That’s not how I remember it, although memory is fallible. I worked
in a department that dealt with data (on Univac computers), and Al and Brian were inter-
ested in adding something database-ish to the Unix commands. It’s possible that they had
started with even more ambitious plans, but my recollection is that we decided early that
scanning data was a productive way to go.

Why did you choose to focus on a tool to extract information from files? Why did you
avoid the feature to insert data, for example?

Peter: One of the unifying features of Unix command-line tools was that they dealt with

files made up of lines (and it was ASCII in those days). One would (and did) do insertion

with an editor, and otherwise updating a file usually meant making a new file with modi-
fied contents. Other things were possible, and were done, but they weren’t main line.

I heard that you focused on reading data because you didn’t want to deal with
concurrency in writing.

Peter: Well, not exactly; that’s not the way it came out. :)

Would you make the same decision today?

Peter: No, I think if we were writing it today, and remembered to not get overambitious,
Idon’t think there would be any user-visible concurrency stuff in it, but I'm sure it would
be built to exploit whatever sort of local multicore or parallelism there was. I'm sure it
would have caused us some trouble, but then we would’ve overcome it. There’s an inter-
esting question there, or possibly interesting question, which is: how much would that
have changed the language design at all?

I don’t know; you’d have to think about that. If you think you have free CPU, lots of free
CPU, there’s several things you can do. One is you could say, well, we’'re not going to use
it; we’ll just leave it for whatever else is running. Which in the case of AWK, or something
like AWK, is not a bad choice, because if you believe that mostly it’s designed to be used in
pipelines then the other things in the pipeline need CPU processing time, too.

On the other hand, if you think it’s going to be used for relatively complicated file trans-
forming, you might put in things that could use several processors running on them at
once, which of course we didn’t do, because that’s not the way machines were then.

Download at Boykma.Com AWK

137

In what contexts do you see AWK as a better fit than SQL, for example?

Peter: Well, they are essentially incomparable. AWK has no explicit types, SQL is badly
overrun with them. That is, AWK reads and writes strings, but it’s prepared to consider
some strings as numbers when asked to. SQL does joins, but to do the same thing in AWK,
one would run a program in front of it, probably ‘join’. SQL does sorting and aggregation,
but in the Unix context these are done by sort, and then piping through AWK again, or
another Unix command. In short AWK was meant to be used as part of a sequence of
commands piped together. SQL was meant to be used with data hidden away in an
opaque structure, with some sort of schema known to the user. Finally, there’s years of
query optimization work done to support SQL while in AWK, what you see is what you
get.

What advantages do you see in storing (Unix) logs in text files and manipulating them
with AWK?

Peter: Text files are a big win. It requires no special tools to look at them, and all those
Unix commands are there to help. If that’s not enough, it’s easy to transform them and
load them into some other program. They are a universal type of input to all sorts of soft-
ware. Further, they are independent of CPU byte order. Even so small an optimization as
keeping them compressed implies that people remember which compression command
was used, and there are usually several choices. As for manipulating them with AWK,
that’s fine if a pipeline of commands does what’s needed. Otherwise a scripting language
like Perl or Python reads text files just fine. Finally, so do C and Java.

Text files for logs are great. In the old days, one argument against them was that they had
to be parsed, and numbers converted to binary and so forth. But the latter is barely notice-
able in CPU time, and lines of text are trivial to parse compared to XML. On the other side,
fixed-size binary structs don’t need parsing but that’s very unusual, and it’s a rare case
where it makes a difference.

AWK was one of the early proofs of the power of the Unix concept of many small
programs working together. These programs were largely text-oriented. How does the
concept apply to nontext forms of data and multimedia?

Peter: It’s useful to tease out what the “Unix concept” really was. It was a style in which
many programs were useful with one input and one output, together with command-line
syntax, and system support that made all input and output uniform (read and write system
calls, no matter what the device) and system support (pipes) that avoided having to name
and allocate temporary files. Transcoding and compression are examples of things that the
idea applies to perfectly well, even when the data is audio or video. But even with text,
there are lots of applications that don’t work that way, particularly if human beings need to
interact with them. For instance, the spell command produced a list of words it thought
were misspelled, but it wasn’t interactive; the users had to go back and edit their document.

138 CHAPTER SIX Download at Boykma.Com

So the essence of your question might be, “If we only have command lines, what com-
mands would be used to process data or multimedia?” But this is a counterfactual. We
now have other ways of interacting with computing, and more choices for dividing up
tasks. The new ways aren’t necessarily better or worse than the old ones, just different.
One example is TeX versus programs like Word. Is one better than the other? I doubt that
there is a consensus.

What limits do you see in command-line tools and in graphical interfaces?

Peter: This is an old old topic and the boundaries have become a little blurred. Perhaps it
needs a thoughtful essay. Here’s a superficial answer. If I need to combine a bunch of pro-
grams, then a shell script invoking command-line tools works well. It’s also a way of mak-
ing sure the options and preferences for the various components are consistent. But
graphical interfaces are a lot better at letting me see and choose among a modest number
of options and potentially better at keeping all the information organized.

Many interviewees underlined the importance of learning math to be a better
programmer. | wonder to what degree we can study what we need right when we need it.
For example, with the Internet you can find and learn things pretty quickly, right?

Peter: Yes and no. Unfortunately to learn some things, you not only have to think about
them but you have to sort of practice, so there’s some stuff—you can go to the Internet
and you read it and you say, “Oh, yeah, that works.” And then there’s some stuff where
there’s just no substitute for years of hard work. So here you are in the middle of some
project and you decide you need to understand linear programming to solve your prob-
lem; probably what you’ll get from the Internet will not be helpful, and if you have to solve
this problem within a week, you're unlikely to choose a method that requires a lot of work to
learn unless you already know about that—even if it were much better. And that happens.

What is the role of math in computer science and programming in particular?

Peter: My degree is in math, so I'd like to believe that math is fundamental. But there are
many parts of computer science, and many kinds of programming, where one can be quite
successful without any mathematics at all. The use (or usefulness) of mathematics comes
in layers. People with no feeling for statistics or randomness will be misled over and over
again by real-world data. There’s mathematics in graphics, there’s lots of mathematics in
machine learning (which I think statisticians think of as a form of regression), and there’s
all sorts of number theory in cryptography. Without some mathematics, people are just
cut off from understanding large parts of computer science.

What differences do you see between working on the theorems and building an
implementation?

Peter: At the highest level, when you prove a theorem, you know something about the
universe that you only suspected was true before. It’s unconditional knowledge. When
you write a program, you can do something you might not have been able to do before.

Download at Boykma.Com AWK

140

CHAPTER SIX

In some sense, you’ve changed the universe. Mostly the changes are very, very small.
Mathematics and programming are quite different. Maybe the easiest way to see that is to
compare mathematics papers, and the proofs of theorems or programs that theorem prov-
ers produce. The papers are short and frequently convey insight. The machine proofs are
neither. Writing a program has some of the character of the machine-generated proofs, in
that all the tiny details have to be right, a huge burden on the programmer’s understand-
ing, and testing skills, too.

Does building the implementation teach you something more?

Peter: Sure. Typically you learn that you should throw it out and implement it again. Any
project has dozens, or more, design decisions, most of which either seem neutral at the
time, or the alternative is chosen on the basis of intuition. Almost invariably, when the
code runs for real, it is obvious that the decisions could have been made better. And then
over time the code is used in unexpected circumstances, and more of the decisions look
bad.

Would functional programming help?

Peter: If the question is whether functional programs, being more mathematical, would
somehow express results better than ordinary programs, I don’t see a big difference. Any
single-assignment language is easier to reason about, but that doesn’t make the programs
easier to write, nor is there persuasive evidence that programs are easier to write. In fact,
most comparative questions about languages, coding techniques, development methodol-
ogies, and software engineering in general, are appallingly unscientific.

Here’s a quote from R. Bausell’s Snake Oil Science [Oxford University Press]:

Carefully controlled research (such as randomized, controlled trials) involving numeri-
cal data has proved more dependable for showing us what works and what does not
than has reliance upon expert opinions, experience, hunches, or the teachings of those
we revere.

Software is still a craft, rather like furniture making. There are Chippendales, there are
craftsmen, and there are lesser practitioners. I'm a little far off your original question here.

What are your suggestions to become a better programmer?

Peter: How about “learn mathematics”? Oh well, perhaps another answer would be bet-
ter. How about “understand floating point”? Maybe not that one, either. People vary a lot
on this.

I think it is important to learn new techniques and algorithms. Without that, I think peo-
ple quickly become overspecialized and narrow. In addition, these days one ought to be
up on writing secure and robust code. There’s a lot of attacks on users and systems, and
you’d like to make sure it’s not your code that is vulnerable. This is especially tricky for
websites.

Download at Boykma.Com

When should debugging be taught? And how?

Peter: Talking about debugging should be integral to all programming courses (and inte-
gral to all language design as well). It’s hard enough to write correct sequential programs
running on isolated machines. Writing multithreaded code is even harder, and the debug-
ging tools are not yet very satisfactory. One consideration in design needs to be whether it
makes debugging easier. It's not much of an exaggeration to say that as a programmer
either I am trying to decide what to do next, or I am debugging. Everything else takes
hardly any time.

Is there something you consider the biggest mistake you’ve made with regard to design or
programming? What did you learn from it?

Peter: I don’t know that there’s a single biggest mistake. People make mistakes all the
time. From mistakes you learn (perhaps without being able to state them clearly) a set of
design priniciples that generally work. Then you push them too far, and they break, and
perhaps the new lessons can be incorporated in them, or perhaps your code always bears
the scars of your obsolescent design rules. I find I do not put enough useful explanation in
error messages, and generally end up going back and adding details. There’s a typical con-
flict here: if the error occurs, you want complete useful information. If it doesn’t occur
that’s a lot of typing, and a lot of space taken up on the screen. It’s a balance.

What do you regret most about AWK?

Peter: I think the brainstorm of using whitespace for string concatenation didn’t work out
as well as we hoped. An explicit operator would have made things clearer. The syntax also
generally suffers from the conflict between wanting to encourage short command lines
and allowing big programs. We didn’t think of the latter at first, so some of our choices are
uninspired.

What has become popular (or useful) to your surprise?

Peter: The whole language became much more popular than we expected, or than I
expected. One of the ideas that guided the design was that it should be easy to learn for
people who already knew Unix-like things, particularly C and grep. That doesn’t drive it to
a mass audience of secretaries (as they used to be called) or sheep farmers. But I met a
sheep farmer at a wedding in the early 90s who used Unix to keep his records, and was a
great fan of AWK. I suspect he’s by now moved on.

How do you stimulate creativity in a software development team?

Peter: The best path to high-quality software is talented experts who share a pretty clear
sense of what they want to produce. There are other ways, but they are more work. I have
no idea how to produce good software without talented programmers, though presumably
it’s possible.

Download at Boykma.Com

AWK

141

How did you develop a language as a team?

Peter: We all talked about syntax and semantics, and then each of us would write code.
Then any of us would change the code. For most of it, it’s not any one person’s code,
although Brian has tended it over the years. We also had limited ambitions. I think we
were helped by the target machine, which only had 128k bytes of memory.

For design we sat around and talked and wrote on the board, and then in coding it might
turn out that we’d missed something important. That would call for informal discussion.

When you find a recurring problem in a codebase, how do you recognize if the best
solution is a local workaround or a global fix?

Peter: There are two kinds of software projects: those that fail, and those that turn into
legacy horrors. The only way to avoid the second would be to rewrite the code as its envi-
ronment changes. The trouble is that that’s a luxury most projects can’t afford, so the
pressure of reality forces people to put in local fixes. After enough local fixes, the code
becomes rigid and really hard to maintain. Without the original developers, or remarkably
good specifications, it becomes really hard to rewrite the code, too. Life can be hard.

If you had one piece of advice, what should readers most learn from your experiences?

Peter: Quoting, or perhaps misquoting, Einstein: “As simple as possible, but no simpler.”

The trick is not being self-indulgent, which it’s very easy to become. If for sure people are
going to start asking for something, then you might as well put it in. It requires judgment
to get simple but no simpler than necessary, whatever the quote is.

The simplest thing that can possibly work? That was Kent Beck, | think. How do you
recognize simplicity and resist adding things that you don’t need right now?

Peter: It depends on who you’ve got around you. For many people, “Can you explain it to
your parents?” would be a good test. Sometimes that may not be possible, but as a starting
point it seems quite reasonable to me. A more general test is if you think about the people
you expect to use it, “Can you explain it to the median user?” as opposed to “Will the
smartest user figure it out?”

Theory and Practice

You taught math before joining Bell Labs. Should we teach computer science in the same
way we teach math?

Peter: We teach math for a couple of different reasons. One of them is for future mathe-
maticians, which is sort of what I was doing when I was teaching math. One of them is
because mathematics is so useful. But it’s a little clearer, I think, what mathematics is than
what computer science is.

142 CHAPTER SIX Download at Boykma.Com

In computer science there are various kinds of programming and it’s hard to know what
to think about that. There’s all those data structures and there’s the sort of algorithms and
complexity part. It’s somewhat less clear what different users of computer science need
than it is, at least what people think about, what potential users of mathematics need. So
when you're teaching mathematics you know what the engineers need; nowadays I sup-
pose you know what people who will be doing statistics or economics or something need,
but I think the problems are somewhat simpler for the mathematicians.

On the other hand I think computer scientists ought to know more mathematics, so
there’s some leftovers from when I was a mathematician.

So there’s this question versus what we might loosely call reality: computer science
departments, at least in this country, have had some trouble attracting majors, at least
over the last several years; it’s not clear why, but some of the ones who have succeeded in
attracting more majors have changed their curricula a lot. So, what computer science
should be taught is changing.

From your previous answers | have the impression that you suggest that the sweet spot of
programming is between a pure theoretical approach, where you might be too far from
the real-life needs, and a full pragmatic approach, where you might solve the problem
assembling pieces of code from various sources. Does this make sense?

Peter: Well, yes, but I think the bigger problem is it’s very hard to know where to draw
the various lines. It depends on what your ambitions for your code are. If you expect peo-
ple to use it for a long time, then it has to be written so that it’s very easy to fix bugs.

The other thing that’s difficult is if you get too many users too soon, it means it’s too hard
to fix any design problems. If I write it just for myself, then every time I don't like the way
it is, I just fix it or change it. If you write it for a fairly small group, then it takes a while
betfore people complain when you make incompatible changes, because they know it’s exper-
imental. But if you write for a large group or if it’s used by a large group, it becomes much
harder to make an incompatible changes, so you're stuck with whatever choices you made.

This might be one of the problems with legacy software, when people take pieces of code
from various sources such that problems in that code propagate and stay alive for
decades.

Peter: Yes, I think that a lot of code that’s still around that was written a long time ago by
people who had no idea it would last this long.

One factor that keeps AWK alive is that so many users take scripts written by someone
else and modify them to do something else.

Peter: Yes, that’s right and in fact that was a design goal. That's sort of the way that we
thought it would be used, we thought that it would be used a lot. People would take
things that did almost what they want and just modify them.

Download at Boykma.Com

AWK

143

Is this idea of programming by example applicable to larger projects?

Peter: I think not too much larger, because the example has to be small enough to see to
understand. The level at which you can do it, it’s easiest if it’s a few lines of code. Maybe
you could get up to sort of a screenful, and expect people to follow what’s going on. Pretty
much it needs to be simple enough so that you could just look at the code and see what
needs to be changed, or at least see enough of what needs to be changed so that you could
run experiments to see if you've got it right.

The idea to write very short “throwaway” scripts sounds very seductive. Has your
experience with big codebases and other programming languages taught you when to
rework a codebase, and when to restart it?

Peter: It’s hard to restart from scratch, in practice. If your user community is small, you
can talk to them. Otherwise, if your code has a well-defined interface, then it’s possible. If
the interfaces aren’t well defined and the user community is large, it seems really hard to
avoid breaking things. Unfortunately this is true of less-drastic upgrades, too. So that’s
actually the good news, namely that since any substantial upgrade will break things, it’s
not too much worse for the users to do a major reimplementation. After a few years, new
code will almost certainly need to be totally rewritten. Users will use it in ways that the
developers hadn’t thought of, and many of the implementation decisions will turn out to
be suboptimal, especially for new hardware.

The AWK experience is a little different. We did rewrite it several times, but then we
declared it finished. It would have been possible to upgrade it, but all our ideas seemed
incompatible with the basic principles. I think that was nearly the right decision. We all
went on to other things, rather than expanding the range of the system. The only thing
that I think is missing for its tiny niche in the modern world is using UTF-8 as input.

Brian said that you were a very fast implementer. What’s your secret?

Peter: I don't think there is a secret. People are just different. I'm not sure, for instance, if
I had to do it now, that I would be quite as fast. Part of it was optimistic ignorance, I think.
That's the belief that you can just write it down and it will be enough. Part of it is how one
is with the tools, and language, that are available. Some people find the tools comfortable,
and some don’t. It’s like the ability to match colors with watercolors, which some find easy,
and some find difficult.

One of the things that I think that’s true is that if you are going to write code profession-
ally, for a living, you should find it fairly easy to write; otherwise, you're just struggling all
the time. It’s like writing short stories: if you don’t find it easy to do them at a certain
level, T think you are going to find it very hard to do at all, although I don’t know since I
can’t do that kind of writing. It’s a lot of work getting things into their final shape.

144 CHAPTER SIX Download at Boykma.Com

Do you write the prototype and then modify it to get professional-quality code? Or do
you experiment with the idea, but then rewrite completely to create the finished work?

Peter: I think you can’t tell in advance. When you start writing the prototype, you can tell
sometimes what kind of compromises you're making. Sometimes those compromises
mean that the prototype will be inconsistent with being easily converted into a production
program. Anyway, there’s all kind of things that you might do that would make it hard, and
in that case you're just going to have to rewrite it, but if you're lucky, then maybe you can
transform it sort of step by step. You ought to expect to have to throw it away, and redo it.

For one thing, it’s unlikely you’ll make enough right decisions. You write it and you start
experimenting with it and you change things. After a while, unless you were very lucky,
the code starts looking terrible. It really needs to be at least refactored, but probably just
rewritten. That’s what I would probably expect; you’d really end up rewriting it. Certainly
the first AWK implementation was purely a proof-of-concept thing because it generated C
code; of course that’s completely inconsistent with how you would want to use it.

Tom Kurtz, creator of BASIC, said that writing code makes you understand aspects of the
problem that you didn’t think of.

Peter: That’s right, stuff you weren’t smart enough to think about until you had to face it.
I think one of the things you look for when you're hiring people is whether or not writing
code is a natural form of expression for them. Is this how they express their sort of algo-
rithmic ideas?

What differences are there between writing software and creating a language?

Peter: In some ways writing a language is simpler than the general software, but I'm not
sure that’s really true. It concentrates your choices, I think, because it has to fit together
and there’s a relatively modest number of ways to do each thing. Once you’ve decided on
the big features of the language, there’s a lot of framework that’s already in your head:
how functions will work, and are you going to do garbage collection, or whatever. What
are the primitives of the language? The implementation comes in layers. I think that tends
to be somewhat easier. Of course, if, sort of late in the thing, you’ve discovered you made
some really bad choice, you have to throw it all away.

Does the implementation affect the design of the language?

Peter: Oh, sure. I think you can see that undoubtedly. I think, for instance, for a long
time it was a relatively special thing to do garbage collection. The Lisp guys worked at it
and some of the functional programming guys worked at it and lots of other people just
sort of waited because it wasn’t quite clear how it would work in, say, C-like languages.
Then, for instance, the Java guys just said that’s what we're going to do. It was quite a dif-
ferent tradeoff, by making a relative small change in features of the language; I'm not say-
ing this is what happened to Java, but by giving up on actual memory address as being
accessible to programmers, you could decide whether you wanted to try garbage collection
or compacting garbage collectors and stuff.

Download at Boykma.Com AWK

145

I think now languages without that really suffer a lot comparatively, even though garbage
collection is far from perfect. Fighting with memory allocations is a big annoyance, so it’s

never quite totally trivial, but there’s lots more known now about how to implement lan-
guages and you have a much wider choice of things to do, especially if you're doing some-
thing lightweight.

If you want a feature in your language that’s hard to implement, it’s not clear that it’s
worthwhile because it’s hard to implement and you're trying to do something lightweight.
If you're trying to do a language that makes doing difficult things possible, then there
might be a list of things that you have to do and then you have to put up with whatever
the troubles are.

How much does the language influence programmers’ productivity? How much does the
ability of the programmer makes a difference?

Peter: Boy, I wish I knew the answer to that. I used to think I knew the answers to those
questions. It’s clear that programmers vary some huge amount in ability. There’s really
more than a factor of 10, maybe much more than a factor of 10. This is sort of software
engineering, so there’s no empirical evidence for any of it, and my belief is that the lan-
guages shouldn’t matter. That is, given a group of people and some project, it really
doesn’t matter what the language is, but for individual programmers I suspect it does mat-
ter. I think people, for personality, or what they learn first, or whatever, find some kinds
of languages easier to adapt to than others. This is where you get these funny debates.

It’s clear that there are, for instance, Lisp applications that would be really hard to achieve
the same functionally in C, and for that matter C applications where it would be really
hard to achieve the same thing in Lisp. But for a range of programs you could use lots of
languages, but I'm not sure even with practice all programmers would be equally comfort-
able across a wide range of languages, and I don’t know why. But of course it takes time to
become expert in a language. On the other hand, for some people it takes less time in
some languages than other languages.

People have these big debates about languages and which of the many desirable features

they implement and which ones they don’t, and how awtul that they don’t and stuff like
that. But it’s not clear that it really matters. To put it much more controversially: you can
write Mars Lander software in any language; each one of them will have properties and it
will depend much more on the people who wrote it and how they organized it than what
the language is. Everybody will argue fiercely for their choice, but I just don’t believe it.

C doesn’t support objects, but at the same time you built little tools, components of the
Unix system, that could be used together to build complex features. To what degree does
building objects inside the language as part of a bi¢ program work better than building
components that are part of the system?

Peter: That raises two questions in my mind. One of them is sort of a binding question or
a modularity question. The question is what you put inside one language as opposed to
what you try to compose out of tools. You get a much tighter and of course more complex

146 CHAPTER SIX Download at Boykma.Com

relationship among the components if they are all within a language. Some of that is just
computational efficiency, but I think some of it is conceptual consistency also.

The other question has to do with “object-oriented” as a general idea and I think it’s possi-
ble to be overenthusiastic about the success of object-oriented this and that. Leaving that
aside, which is somewhat controversial, if you look across languages a lot of them say,
“We're object-oriented,” and then when you look closely, you notice they all do quite dif-
ferent things. It’s not always clear what the term means. In fact, people get into these very
confusing discussions, because there’s a natural temptation to believe that whatever your
language does about objects, is what object-oriented means. I think it’s basically a term
that does not have a simple, relatively straightforward, widely accepted definition.

How does choice of programming language affect code security?

Peter: You certainly need something to help you with all the various things that are
involved in security. I guess, roughly speaking, two kinds of things go wrong in programs
that are connected with security. One of them is logic errors of one sort, so that there’s
something that you can say to the program and it makes a mistake and it gives you privi-
leges or does things it’s just not supposed to do at all. The other is the whole buffer over-
flow stuff, which is implementation errors of various sorts that are exploitable, actual bugs
that people didn’t think about. And I think most of those just shouldn’t be there. Low-
level languages support buffer overtflow with careless programming of various sorts, so it’s
not easy to get right.

I thought there was a time when it was rumored that Microsoft for what became Vista was
just going to rewrite all the C and C++ into C#, and at that point you weren’t going to get
buffer overflows, because you can’t get buffer overflows. But of course that didn’t work
out. Instead they do these enormously elaborate things with machine-language executa-
bles, to attempt to make it hard to exploit buffer overflows and other similar things.

Then there is another kind of security problem, which happens at seams between pro-
grams, because a lot of the interfaces aren’t all that well specified, or not specified at all in
some sense, except very informally, such as HTTP and XML cross-site scripting and those
things. We need to do something about security, but I really don’t know what.

How much does it help if the language makes it difficult to create certain problems?

Peter: Yeah, as much as possible, but like our earlier discussion, it’s not clear how much
that helps. It was a time when I was writing a fair amount of Python, and I had these
amusing bugs, which of course are caused by careless thinking and bad style. But the thing
about the indentation in Python was that as soon as the loop became too long—I had a
nested loop—to get at the bottom of the loop, I needed to go back two tabs to get out of
the loop and do some work, and I didn’t give it two tabs; I gave it one tab because I
thought that was enough because that is what it looked like on the screen, and that of
course meant I was doing this expensive thing every time through the outer loop, which
was very silly. Although the program was still correct, it was very slow.

Download at Boykma.Com AWK

147

I guess the moral is no matter how well designed the language is, it’s always possible for
the programmer to make dumb mistakes. And the question of whether or not you can be
relatively scientific about ways you can make it less likely or more likely, I don’t know.
Software engineering is in many ways a very pathetic field, because so much of it is anec-
dotal and based on people’s judgments or even people’s aesthetic judgments. It’s not clear
to me how many of the criteria people use to talk about languages, in programming lan-
guages, are directly and irreducibly relevant to writing correct programs or maintainable
programs, or programs that can be changed easily.

Research generally helps the implementation, but the design aspects generally reflect the
personal preferences of the designer.

Peter: Yes, in fact, I think the really successful languages have little things in them that
weren’t directly examples of what had appeared in the literature. People decided that
something would be interesting to do. All the stuff that is in programming language is use-
ful for thinking about languages, and talking about languages, but it’s not clear what you
would do, either in the language or in how you use languages, to make the code, to make
a programming process better, the maintenance process better. Everybody has strong
views on this, but it is not clear to me why we should believe what. There doesn’t seem to
be any science.

It’s difficult to use a scientific approach for the design of the language partly because we
don’t have a scientific way to measure the good and the bad of a language.

Peter: Yeah, I think that’s right, or the good and the bad of programming in general, not
just languages. There are lots of people who think they know solutions but it’s not quite
clear to me why they should be believed because it’s clear there’s lots of different success-
ful ways of developing programs.

How do you choose the right syntax for a language? Do you focus more on corner cases or
on the average user experience?

Peter: The not-so-surprising answer is “both.” It should be as sensible as we humans of
bounded intelligence can make it, but it should be clear what the semantics are in corner
cases, too. A successful language will be used by lots of people, most of whom don’t share
the designer’s point of view or aesthetic judgment, and it’s best if they aren’t gratuitously
misled by strange features or edge cases. And, people will write programs that generate
programs in the new language, and that will come as a surprise to the implementation.

When designing a language, do you consider debugging when evaluating potential
features?

Peter: That’s a tricky question. What you hope for is a fair amount of help from the devel-
opment environment for what'’s easy to do. The stuff we know how to do is giving guesses
as to what the completions might be and show you what the parameters are, and it can
show you other references if it’s good, and find the definitions. It’s harder of course to find
a function you don’t know the name of that does something, I mean you’re sure some-
where in this mess is a function that formats numbers in a machine-readable way and

148 CHAPTER SIX Download at Boykma.Com

puts commas in or something like that, right? But how do you remember the name? How
do you find the names of these functions? And so when people write these libraries, they
try naming conventions, informal naming conventions and things like that. But a lot of
that stuff just doesn’t scale very well.

How about g¢ood error messages?

Peter: Well, that would be nice. My usual complaint about error messages is that they
read like notes from the program to itself, as opposed to suggesting to the user what you
might fix, and in some cases they’re much worse than that.

How much detail do error messages need?

Peter: Well, they should be as helpful as possible, but that doesn’t actually answer the
question. Certain kinds of errors in programming languages are much harder to be intelli-
gent about than others, although you can certainly understand heuristics. So in C-like lan-
guages mistakes in separators and braces really tend to confuse the compilers a lot and it’s
hard for them to explain, and so people learn to recognize what your compiler says when
you’ve left out the semicolon between a class definition and the next function. You just
recognize that this imbecilic error message has nothing to do with what actually hap-
pened. The compiler has gone too far into the next function before it noticed it was a mis-
take. And if you leave out a closing curly brace, you get the same kind of
incomprehensible error messages; you just sort of learn what their shape is. It’s possible to
do better but it seems to be a lot of work, and it’s not clear that it’s worth it.

There’s another way of asking this question, which is would you like stupid error mes-
sages that give you a hint about what the program thought was going wrong, or would
you like helpful error messages that remind you of those hints that Microsoft used to put
in Word to give you help that were never very useful and always seemed to be wrong?

I think if you're going to do fancy error messages, you have to work hard at getting them
so that they’re mostly right; but that’s partly because we’re used to mediocre error mes-
sages from which we can sort of figure out what’s going on.

Waiting for a Breakthrough

How would you change AWK to improve the support for big¢ programs?

Peter: Given all that’s happened in between, the question is, would we have come up
with Perl or would we have come up with something else? Well, I don’t think we have the
right kind of minds to have come up with all of Perl, but if you look at the spirit of what
was going on AWK, if you thought it should be used for big programs, something like that
would be possible.

I think the other answer is we stopped when we stopped because it seemed like a good
place to stop. I don’t know if I've told this story—I think it’s only months, but in retrospect, it
might have been a couple years after AWK had been released internally—I got a call from
somebody in the computer center who was having some trouble with AWK, and I went

Download at Boykma.Com AWK

149

down to look at his program and we had thought of AWK as I described it, short one-liners,
little things, OK? And he had written an assembler for some esoteric piece of hardware in
AWK and it was 55 pages of code. We were just stunned. In fact it’s not so strange you can
do that; people certainly wrote longer programs in languages with less structure, but it
was quite surprising to us.

Brian said that essentially every time you design a little language, people start using it and
then they ask for loops and whatever, so every time you have to stop, otherwise the
language would become...

Peter: ...bigger and bigger, and you have to decide whether you want to go down that
road or not.

If you want to build a general-purpose language, start with that goal in mind, instead of
starting from a little language and going big after it becomes successful.

Peter: I think that’s right, too. That was another thing, which is another story I may have
told. Bigness is that people write programs and, say, languages, parsers, or compilers, and
they think of people as typing the input, but for many reasons you may discover people
writing programs to produce the input. I think typically the first time that happens is the
compiler case because, say, in a C-like language nobody ever saw an 80,000 case switch
statement before. They don’t think of a human being able to type a 80,000 case switch
statement. Maybe the code generator never saw a switch statement with so many cases.
These things happen at all levels even for general-purpose languages.

What about extensible languages where users can modify the language?

Peter: Well, it depends exactly what that means, I think. I mean basically, yeah, sure, but
there’s a lot of limitations you get unless you mean something like Lisp, where people can
add these things to the language using macros. There’s lots of reasons people want to add
stuff to languages, for either expressibility or because you need to include libraries written
in other languages that do complicated things.

This is another question that of course we didn’t have to face in AWK at all, thank you,
which is how hard is it to incorporate subroutines or packages written in other languages
into your language? The answers to that question vary a lot.

There seems to be a divide between mathematicians and nonmathematicians. Is there a
difference between mathematics and software development? C won; Scheme didn't. C
won; Lisp didn’t. It’s the “worse is better” approach again.

Peter: I think there may be a difference between the mathematician-designed languages
and the nonmathematician-designed languages, but the differences between Scheme and
C are much more the difference between languages that attempt to have a simple founda-
tion and languages that don’t. There’s nothing absolute in this; we don’t know what’s
going on.

150 CHAPTER SIX Download at Boykma.Com

There’s certainly no general agreement on what makes languages successful, but there are
a lot of factors. Everyone has favorite facets and aspects, and no one knows how to
encompass them all. Original Lisp, to be purist, had a very simple model of what was going
on, and was for that surprisingly powerful. One might ask, why did they have to make the
language more complicated? What was it that they weren’t doing that needed extra com-
plication? Certainly all the intermediate Lisps, and then Scheme, and then finally Com-
mon Lisp, have extra complications.

There’s probably two things. This may not work out because I haven’t thought it through
but let me just push right on. One thing is programmer convenience. Another thing is pro-
gram performance. We’ll get to other languages eventually but I think that languages like
Lisp give a lot of clarity to some of these issues.

One of the big differences between original Lisp, I believe, and Common Lisp is the extra
data types, hash tables, and stuff. Those are in there essentially for performance. At the
other end of this—my history is really weak on this instance; I do not actually know a lot
about Lisp—at some point the Lisp guys started putting macros in. In one way, macros are
a very natural thing. There’s just a different evaluation environment for them, but—and
that’s a question of programmer convenience—there’s nothing macros do that program-
mers couldn’t have written themselves.

They're a force multiplier.

Peter: That's the expectation. But you also get a force confusion multiplier and you use it
extensively; it means that your code is essentially unreadable by anyone else. It makes it
much harder to say what your language does, even informally. There’s a lot of funny cor-
ner cases. Even in this relatively pure environment, you can see the tensions between
what you might call mathematical purity and getting the damn job done.

All the Lisp languages and all those other languages, many of which have very formal
semantic definitions, have exactly the same problem. There are people involved in at least
at two phases of the life of the program, plus there’s a computer involved. To make the
program satisfactory to the computer, you need a quite precise definition of what the stuff
the people write means. The people need something that’s not hard to write. Once the
program has been alive for a while and used, it’s quite likely the people changing the pro-
gram, the maintainers, have to be able to read the code and change it.

In my—as we say, “humble, but correct”—opinion, many of the features of some lan-
guages that make it convenient to write the code make it very difficult for maintainers.
Just for greater shock value we can pick on almost all object-oriented languages. These
sorts of pragmatic languages, where the precise semantics are only clear to the compiler
and the compiler writer, are quite valuable to the writer of new code. Languages that
allow you to express your intent in a way that’s clear to people who have no other guid-
ance but the code, that would be nice, too. I'm hard-put to think of any examples.
Although, of course I haven’t written in every language. But among the languages with
which I'm familiar, there may be slightly better and slightly worse languages for this.

Download at Boykma.Com

AWK

151

You're talking about two different axes.

Peter: Yes, I am. That’s right. However we were writing code in the good old days, when
giants walked the earth and all that sort of stuff. Pygmies walked the earth, but they were
in big boxes. Nobody thought that their code would last for 30 years. If you had said “Unix
will still be here,” or “FORTRAN will still be here,” the natural answer from all of us would
have been “Yes, and we would rewrite it.” That’s the way we lived. You put it out, and
you rewrote it. It was slightly incompatible and somewhat better each time, until you fell
victim to the Second System Effect, in which case it was very incompatible and a lot
worse. We sort of understood abstractly the idea that there are only two kinds of software
projects: failures and future legacy horrors.

We didn’t understand the fact that you couldn’t keep writing software year after year and
rewriting it also. It adds up and either you spend all your time rewriting the old software,
or you let it slide. You can’t do both. The maintenance problem to some extent looms
larger and larger, although I say that because that’s what I spend a fair amount of time
doing with Google, where it looms pretty large to me.

Leaving aside this unsolved case—the earlier comments on my distinction between lan-
guages of the mathematical sort of languages and the nonmathematical sort—there’s also
languages designed by mathematicians or ex-mathematicians or people who think like
mathematicians, and languages that are not. I would expect the former to be nearly com-
pletely specified, even if informally. You would really write down what it’s supposed to do
in all the circumstances you could think of. You’d actually write down the lexical story, as
opposed to hint at it. You try to write down the rest of it, and you might not succeed.

Simon Peyton Jones said they managed to specify about 85% of the first version of
Haskell, but beyond that it just wasn’t worth their time.

Peter: Sometimes you can be too careful. One of the things that hasn’t worked as well as
it might have in C short int or long. You had two choices there.

You also have signedness.

Peter: Please, we will not even start on signedness or const, for that matter. You could
have said, “We will have int8, int16, int24, int36, int64, whatever those all are, and the
language will either promise to do exactly that or we’ll do our best but round up.”

This is all in retrospect. I'm not sure that I could have done it even as well starting up ab
initio. Or you say “Listen, we’ve got short int and long, and we'll tell you what they are
and bug off. For other things, you just have to cope yourself somehow.” That wouldn't
have surprised the compiler writers that want to give every last bit of efficiency to their
users. You see in GCC where they’ve graciously gifted you with plenty of types. Then
there’s the unsigned guys and the pointer-sized guys and all that other stuff, which is just
too much to contemplate.

152 CHAPTER SIX Download at Boykma.Com

Also strings are an interesting example. After you’ve come that far, you realize that if you
allowed arbitrary characters in them as opposed to making them say UTF-8 strings or
ASCII strings, then you can’t print them. While it doesn’t sound bad to say “Yes, all my
structures that my language and program supports are binary except the ones that are
explicitly made into printable format,” it’s a big pain in the neck.

We need some real conceptual breakthroughs. It’s been a long time, and I'm pessimistic.

You’ve made me pessimistic.

Peter: I'm sorry. What’s amazing is that all this stuff actually sort of functions, and you
can actually rely on it. It doesn’t come with any guarantees but effectively you can rely on
it. You know, your car long ago lost any ability to function without the computers, and
there’s a lot of code in your car. It mostly works almost all of the time. I know there’s no
guarantee, and I know there are stories where the computers need to reboot themselves
while you're on the highway and all that stuff, but fundamentally you rely on it. At one
level I'm just complaining about inefficiencies as opposed to fundamental flaws—but
they’re annoying.

What type of breakthrough we would need to start solving these problems?

Peter: I think not only “No!” but “Of course not!”, but let me try some observations. On
the one hand, we have huge amounts of computer power on the machines that we write
the software on. Most of the computer power just sits there in some idle loop. Some aston-
ishingly large fraction of it goes in to running the user interface. Then if you're compiling
C, for instance, a huge amount of it goes into reading stuff in to memory and then writing
out various versions of intermediate files so that they can be read into memory again.

OK? For a language with modest structural integrity, where you can actually tell about
aliasing and many other things, you would think the compilers could do a much better
job. That means the programmer’s got to have some way to express their intent, which we
haven’t quite figured out yet. In fact it’s gotten worse. It would be exceptionally generous-
spirited to describe threads and object-oriented as orthogonal. Instead you’d be much
closer to describe them as hideously intertangled. We’ve got all this stuff. You would have
to clean up a lot of the stuff that makes it very hard to tell what programs are doing. That’s
going to become especially difficult in the world of multicore.

Maybe there’s lots of very bright people out there doing very interesting work. Maybe
something will develop. The only tool we have is to ask computers to help our programs
be safer and cleaner, and starting from better languages when we think them up. It’s hard
to see which; it’s a giant ball of yarn, and it’s hard to see which of these little loops sticking
out you start pulling on. Find an end. I don’t know. I'm not eternally optimistic.

On the other hand, it’s not all bad. It’s just sort of annoying.

Download at Boykma.Com AWK

How do you define success in terms of your work?

Peter: When we were doing AWK and things like that, it seemed (it may not have been),
it seemed like you could have an idea and do a pretty moderate amount of work and if
your idea was good and your implementation was good, you had a big impact on com-
puting. So that set a standard that I think would be extremely hard to match any more. It
was easy to have a fairly substantial impact on what turned out to be a significant part of
the computing world then, and I think that just isn’t true any more.

I think the number of small groups that have a big impact is relatively small. It’s hard to
have a big impact. It’s not impossible to be successful, that is numbers of people who use
your stuff, people think it’s good, but you can’t have the same kind of impact, I think. It’s
very hard to see—the extreme example of that is Unix, where a relatively small core group
produced this thing that really made a big difference. And now maybe one of your readers
will explain how there’s some examples of that that I missed in 5 or 10 years, but I don’t
think so. I think now it takes bigger groups and it’s much harder.

I think the answer to your question is: we were lucky and had a lot of impact for relatively
little work. What a great moment, what a great benchmark for success it was. Now I think
for people who are much more talented than we were, that kind of success would be hard
to achieve. Of course that is good in many ways. It means there’s been a great deal of
progress, but it also means that individuals have to settle for less.

Programming by Example

You mentioned that AWK is a language that lives because of programming by example.

Peter: That was a deliberate design decision. There’s many things; some of them bad,
some of them good. AWK has a collection of interesting—which is a very polite way of
describing it—syntactic choices, of which I think only a couple are real mistakes. Mostly
the idea was it would look a lot like C because then we wouldn’t have to explain it to the
people we worked with.

Then the question is now what? Our view was that since all AWK programs would be one
line or at most a few lines, the way to program AWK was to look and find examples that
did something like you wanted. Just change them. If you wanted something more compli-
cated, you’d do it incrementally and that would all work out. At the same time we were
doing AWK there was a project at Xerox PARC, whose name I've forgotten unfortunately,
which was in vaguely the same space as AWK. It was supposed to process files. The Xerox
PARC systems didn’t think of their files with any lines and stuff, but it was close. They
meant it to be used by secretaries. The page you wrote on was two columns. You wrote
the program on the left, and a worked example on the right. The compiler checked that
your program did what the example said it should do.

154 CHAPTER SIX Download at Boykma.Com

That’s clever.

Peter: It was clever, and furthermore they worked hard to make the syntax approachable
by secretaries. Of course it failed. It was not widely successful and AWK was for many rea-
sons. Unix spread and whatever system this was written didn’t, and so on and so forth.

Our version of that was this idea that you find some program that did something roughly
like what you want to do. AWK always was quite deliberately intended for programmers.

That’s not the way it worked out, of course, but the fact that it was relatively simple, and
there were examples you could look at, and you could get the AWK book and look at
examples in, I think helped a lot.

In copying and pasting and tweaking a program, you learn the semantics of the language
by osmosis at best.

Peter: Except the idea of the AWK book is that between the informal introduction and all
the examples, there was supposed to be a fairly complete description of what the language
was and what it did. I think there is and I think that’s the way it worked out.

Do people read that?

Peter: Some do, some don’t. Let me put it slightly differently, OK? Whether or not you
read it, you can do it by example in AWK, right? That’s an empirical fact. How about Ada?
I've never tried.

Peter: My guess is that you’'d be really hard-put to do Ada programs just by examples. It’s
quite possible it would be hard to do C++ programs from example. At some level of sim-
plicity, you could get some ways into it.

People aren’t running one-liner C programs, either.

Peter: That's the difference, of course. It’s very hard to write a one-liner aside from screen
issues. The small examples are intrinsically large.

As is the scope of the problems you're trying to solve.

Peter: That’s right. They're general purpose and AWK is not. One of the early programs
written in AWK was an assembler for some attached processor. I was horrified. He didn’t
clearly explain why he was doing it that way, but it was clear that it was a lot easier to get
started with an interpreted language, and the shell wasn’t powerful enough.

I'd like to see programming become more accessible to everyday people, but I also like
programs that become more reliable and easier to compose them into larger
metaprograms. It’s difficult to resolve those ideas.

Peter: Some composability can be helped by language design and idiom. Reliability, well,
that’s hard. Clean design is hard, too.

Download at Boykma.Com

AWK

How do you recognize a clean design?

Peter: There’s a sort of metaissue here. I used to be a lot more confident in my judgments
than I am now. You look at it and you try to write small examples. You think about what
the people are saying about it. One of the things that’s essentially always true is that the
clean examples that people use in text books are completely unrealistic. There may be a
class that looks like the ones in introduction to object-oriented programming, but I don’t
believe it. They all have many, many members, which are capable of responding to many
messages. The useful object that you can put into programs and understand what the state
of your program is a lot of stuff. I think you put up with a certain amount of complication
if the reward seems great enough.

Or the perceived reward.

Peter: Right. That's all you get. This is software engineering. There’s nothing quantitative.
Perceived and real are the same because we can’t measure real, or at least have shown no
inclination to measure real.

We can’t even measure productivity, and that makes it difficult to measure better or
worse.

Peter: It does, but I don’t think that’s the point. If you're in a real engineering field, you
measure the results. You do bridges. How much did this bridge cost? How hard was it to
build? Does it stand up?

For programs, you can measure how hard it was to build, how much money you spent
building it, but the rest of it is just a complete mystery. Does it do what it says well? How
would we know? How would you describe what it’s supposed to do?

We don’t have a material science for software.

Peter: I have this expectation that when the hardware people finally run out of oomph, it
is possible there will be more of an engineering principle to software. Everything’s been
changing so fast. It’s a sort of doubtful analogy, but if the properties of concrete and steel
were changing 10% every year, structural engineering would look a lot different.

That'’s a speculation because there’s no reason it would have to look different. It’s just the
models would say 2007, 2008, 2009. Since we never had any models in software, I guess
we can’t do that.

We talk about software. We don’t have atoms. We don’t have physical properties.

Peter: That’s right. It’s not quite like mathematics. It doesn’t live completely in people’s
heads. It’s almost completely humanly constructed, and the constraints on it are some
combination of mathematics that has to do with computability and algorithm complexity,
and whatever the hardware guys give us. That part’s been changing rapidly.

156 CHAPTER SIX Download at Boykma.Com

Another point you made was that there’s a real difference between a computer
programmer and a theorem. You can prove a theorem and then you know something, but

you write a computer program and all of the sudden you can do something you couldn’t
do before.

Peter: I still think that’s mostly valid. Of course the more modern versions of theorems
sometimes come with algorithms, not surprisingly, because computing things turns out to
be so useful the boundaries have become a little blurred.

People before the age of computers thought about how hard it was to compute. There was
stuff they computed. Scientific literature has a number of places where you look into the
notebooks of some of these guys and they did amazing calculations by hand, just elaborate
calculations, and then here’s the answer. I don’t think the distinction is totally categorical.
At the time it had struck me since I started out as a mathematician.

Will there be a computing revolution where we start thinking of components as
theorems?

Peter: Not until we learn how to describe them. The kinds of descriptions that have been
most widely used are purely functional. This is how the input is transformed into the out-
put. It says nothing or hardly anything about how long it takes. It says almost nothing
about how much memory it requires. It’s a little vague on what kind of environment it
needs to run in. The theorems, to be fair, they’re human as opposed to machine theorems,
but they do come with hypothesis and conclusions. That’s open to only modest interpreta-
tion, whereas with the software, you need to interpret a lot.

There are plenty of nasty examples. That list I gave even left out things like a real careful
specification of the input. There are programs that are known to have failed when you
move them from 16 bits to 32 bits, because someplace in them was intrinsically 16 bit, and
you didn’t know that. It’s hard to describe all that stuff. It’s not fair, but the favorite exam-
ple of that is programs that have been proved correct which have bugs. Unfortunately
there was something about it that didn’t model reality. People never noticed.

The type guys have this problem. They want to be able to do a type induction guarantee,
which keeps the strength of the system fairly weak. At one other extreme in this multi-
dimensional space is a C++ template, which can compute anything at compile time with
just the speed you can expect, but since you can compute anything, it’s going to be slow
anyway.

That’s a more interesting answer to what’s bothering us about computer science.
Computers aren'’t getting faster. They're getting wider.

Peter: Exponential growth of goodness is a good environment to live in.

Download at Boykma.Com

AWK

157

I realized recently that when the growth in data since the 70s has dwarfed the growth in
processor speeds. Take SQL, designed then, and it can still cope with this huge explosion
in data sizes. Other languages don't fare as well.

Peter: I would say there’s roughly a thousand times gain in CPU speed since then. That’s
not the number in data. The experience in computing I think is that you get some 10”
improvement over time. It’s not a bad approximation to say 102 of that was in hardware,
and 1072 of that was in algorithms. I think that’s true here.

A lot of work has gone into making query optimizers and better understanding of database
design to make it possible for them to have these terabyte databases.

How do hardware resources affect the mindset of software programmers?

Peter: Programmers are too varied a class to generalize about. You have to be aware of
the constraints. For instance, the speed of light is what it is, and is not improving. Some
things that work well locally are disastrous remotely. All those layers of abstraction and
helpful libraries allow us to get programs nearly working quickly, but have pernicious
effects on speed and robustness.

Do you first identify the right aléorithms and then make them run faster, or do you focus
on speed from the beginning?

Peter: If it’s a problem you have some understanding of, you build the algorithm in a way
that keeps the performance good in the parts you think need it, and then it’s possible to
tune it if necessary. Generally it’s more important that the algorithm work, and it’s harder
to rearrange the implementation after a lot of tuning. But it’s not unusual to discover that
something is bigger, or used more often, than expected, so that quadratic algorithms are
intolerable, or even that too much time is spent copying and sorting. Many sorts of pro-
grams perform adequately without much work. Modern computers are very fast, and a lot
of the perceived delay is in networks or I/0.

How do you search for problems in software?

Peter: The trick is finding problems you can solve. There are plenty of problems in soft-
ware that turn out to be too hard, and for many of the ones that aren’t, just scale them up
a couple of powers of 10, and the old solutions frequently don’t work so well.

Once you have something that mostly works, what do you do?

Peter: If it’s for my own use, I just stop there, hoping I'll remember enough context to
upgrade it. For professional things, one really ought to document it, try to harden it
against various sorts of bad situations, and add enough comments to the code that some-
one else could easily maintain it (or as easily as I could). This last thing is hard. Well-
commented code is rare.

158 CHAPTER SIX Download at Boykma.Com

There is a Unix philosophy that says, “If you don’t know how to do something well, you
don’tdo it.” Can this artistic approach spread beyond Unix?

Peter: This is a lot bigger question than just software. Most of our lives, we have to do
things we don’t know how to do well. It was a luxury we got in Unix, plus the original
Unix folks figured out how to do many things very well.

It might be interesting to explore the hard-nosed hypothesis that when businesses don’t
follow this approach they don’t do as well, but I doubt the data would be convincing, one
way or the other. The natural (and no doubt shallow) comparison is between Microsoft
and Apple, but how do you measure, critical acclaim or cumulative profits?

Download at Boykma.Com AWK

159

Download at Boykma.Com

CHAPTER SEVEN

Lua

Lua is a very small, self-contained dynamic language created by Roberto
lerusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes in 1993. Lua’s
small set of powerful features and easy-to-use C APl make the language easy to
embed and extend to express domain-specific concepts. Lua is prominent in the
world of proprietary software, where games such as Blizzard’s World of Warcraft
and Crytek GmbH’s Crysis, as well as Adobe’s Photoshop Lightroom, use it for script-
ing and Ul work. Its predecessors are Lisp, Scheme, and perhaps AWK; it has design
similarities to JavaScript, Icon, and Tcl.

Download at Boykma.Com

161

The Power of Scripting

How do you define Lua?

Luiz Henrique de Figueiredo: An embeddable, lightweight, fast, powerful scripting
language.

Roberto Ierusalimschy: Unfortunately, more and more people use “scripting language”
as a synonym for “dynamic language.” Nowadays even Erlang or Scheme are called script-
ing languages. That is sad, because we lose the precision to describe a particular class of
dynamic languages. Lua is a scripting language in the original meaning of the expression.
A language to control other components, usually written in another language.

What should people keep in mind when designing software with Lua?

Luiz: That there probably is a Lua way of doing things. It’s not recommended to try to
emulate all practices from other languages. You have to really use the features of your lan-
guage, although I guess that is true for any language. In the case of Lua, those features are
mainly tables for everything and metamethods for elegant solutions. Also coroutines.

Who should use Lua?

Roberto: I think that most applications without a scripting facility could benefit from Lua.

Luiz: The problem is that most designers do not see this need untill much later, when
much code has already been written in say C or C++, and they feel that it’s too late now.
Application designers should consider scripting from the start. This will give them much
more flexibility. It will also give them better perspective about performance, by forcing
them to think where the application needs raw performance and where it does not matter
at all, and so can be delegated to the easier, shorter development cycle of scripting.

From a security point of view, what does Lua offer to the programmer?

Roberto: The core of the Lua interpreter is built as a “freestanding application.” This is a
term from ISO C that basically means that the program does not use anything from the
environment (no stdio, malloc, etc.). All those facilities are provided by external libraries.
With this architecture, it is very easy to create programs with limited access to external
resources. For instance, we can create sandboxes within Lua itself, just erasing from its
environment whatever we consider dangerous (e.g., fileopen).

Luiz: Lua also offers user-defined debug hooks that can be used to monitor the execution
of a Lua program and so, for instance, abort it if it takes too long or uses too much memory.

What are the limits of Lua?

Roberto: I think the main limits of Lua are what I consider the limits of any dynamic lan-

guage. First, even with the most advanced JIT technology (and Lua has one of the best JITs
among dynamic languages), you cannot get the performance of a good static language. Sec-
ond, several complex programs really can benefit from static analysis (mainly static typing).

162 CHAPTER SEVEN Download at Boykma.Com

Why did you decide to use a garbage collector?

Roberto: Lua has always used a garbage collector, since day one. I would say that, for an
interpreted language, a garbage collector can be much more compact and robust than ref-
erence counting, not to mention that it does not leave garbage around. Given that an
interpreted language usually already has self-described data (values with tags and things
like that), a simple mark-and-sweep collector can be really simple, and almost does not
affect the rest of the interpreter.

And for an untyped language, reference counting can be very heavy. Without static typ-
ing, every single assignment may change counts, and so needs a dynamic check both in
the old and in the new value of a variable. Later experiences with reference count in Lua
did not improve performance at all.

Are you satisfied with the way Lua manages numbers?

Roberto: In my experience, numbers in computers will always be a source of occasional
surprises (as they are outside computers, too!). I consider the use of a double as the single
numeric type in Lua a reasonable compromise for Lua. We have considered many other
options, but most are too slow, too complex, or too memory-hungry for Lua. Even using
double is not a reasonable choice for embedded systems, so we can compile the interpreter
with an alternative numerical type, such as long.

Why did you choose tables as the unifying data constructor in Lua?

Roberto: From my side, I was inspired by VDM (a formal method mainly for software
specification), something I was involved when we started Lua. VDM offers three forms of
collections: sets, sequences, and maps. But both sets and sequences are easily expressed as
maps, so I had this idea of maps as a unifying constructor. Luiz brought his own reasons,
too.

Luiz: Yes, I liked AWK a lot, especially its associative arrays.

What value do programmers derive from first-class functions in Lua?

Roberto: Under different names, from subroutines to methods, “functions” have been a
staple of programming languages for more than 50 years, so a good support for functions
is an asset in any language. The support that Lua offers allows programmers to use several
powerful techniques from the functional-programming world, such as representing data
as functions. For instance, a shape may be represented by a function that, given x and y,
tells whether that point lies within the shape. This representation makes trivial operations
like union and intersection.

Lua uses functions also in some unconventional ways, and the fact that they are first class
simplifies those uses. For instance, every chunk (any piece of code that we feed to the
interpreter) is compiled like a function body, so any conventional function definition in
Lua is always nested inside an outer function. That means that even trivial Lua programs
need first-class functions.

Download at Boykma.Com

LUA

Why did you implement closures?

Roberto: Closures are the kind of construct we always want in Lua: simple, generic, and
powerful. Since version 1, Lua has had functions as first-class values, and they proved to
be really useful, even for “regular” programmers without previous experience with func-
tional programming, but without closures, the use of first-class functions is somewhat
restricted. By the way, the term closure refers to an implementation technique, not the fea-
ture itself, which is “first-class functions with lexical scoping,” but closure is certainly
shorter. :)

How do you plan to deal with concurrency?

Roberto: We do not believe in multithreading, that is, shared memory with preemption.
In the HOPL paper,* we wrote, “We still think that no one can write correct programs in a
language where a=a+1 is not deterministic.” We can avoid this problem by removing
either preemption or shared memory, and Lua offers support for both approaches.

With coroutines, we have shared memory without preemption, but this is of no use for
multicore machines. But multiple “processes” can explore quite effectively those
machines. By “process” I mean a C thread with its own Lua state, so that, at the Lua level,
there is no memory sharing. In the second edition of Programming in Lua [Lua.org], I
already presented a prototype of such implementation, and recently we have seen libraries
to support this approach (e.g., Lua Lanes and luaproc).

You don’t support concurrency, but you did implement an interesting solution for
multitasking—namely, asymmetrical coroutines. How do they work?

Roberto: I had some experience with Modula 2 (my wife wrote a full interpreter for M-
code during her Master’s work), and I always liked the idea of using coroutines as a basis for
cooperative concurrency and other control structures. However, symmetrical coroutines, as
provided by Modula 2, would not work in Lua.

Luiz: In our HOPL paper we explained all those design decisions in great detail.

Roberto: We ended up with this asymmetrical model. The underlying idea is really sim-
ple. We create a coroutine with an explicit call to a coroutine.create function, giving a
function to be executed as the coroutine body. When we resume the coroutine, it starts
running its body and goes until it ends or it yields; a coroutine only yields by explicitly
calling the yield function. Then, later, we can resume it again, and it will continue from
where it stopped.

The general idea is very similar to Python’s generators, but with a key difference: a Lua
coroutine can yield inside nested calls, while in Python a generator can only yield from its
main function. Thinking about the implementation, this means that a coroutine must

* R. lerusalimschy, L. H. de Figueiredo, and W. Celes, “The evolution of Lua,” Proceedings of ACM
HOPL III (2007).

le# CHAPTER SEVEN Download at Boykma.Com

have an independent stack, just like a thread. What is surprising is how much more pow-
erful these “stackful” coroutines are, compared with “flat” generators. For instance, we
can implement one-shot continuations on top of them.

Experience

How do you define success in terms of your work?

Luiz: The success of a language depends on the number of programmers using it and on
the success of the applications that use it. We don’t really know how many people pro-
gram in Lua, but there certainly are many successful applications using Lua, including sev-
eral very successful games. Also, the range of applications that use Lua, from desktop
image processing to embedded control of robots, shows that there is a clear niche for Lua.
Finally, Lua is the only language created in a developing country to have achieved such
global relevance. It is the only such language to have ever been featured in ACM HOPL.

Roberto: This is difficult. I work in several fronts, and at each of them I feel success differ-
ently. Overall, I would say that common to most of these definitions is “to be known.” It is
always a great pleasure to be introduced to someone, or to contact someone, and to be
recognized.

Do you have any regrets about the language?

Luiz: I don't really have any regrets. In hindsight we could have done some things earlier
if we knew how to do them as we do now!

Roberto: I am not sure I regret something specific, but language design involves several
tough decisions. For me, the most difficult decisions are those about ease of use. One of
the aims of Lua is to be easy for nonprofessional programmers. I do not fit into this cate-
gory. So, several decisions about the language are not the ideal ones from my perspective
as a user. A typical example is Lua’s syntax: many uses of Lua benefit from its verbose syn-
tax, but for my own taste I would rather use a more compact notation.

Did you make mistakes of design or implementation?

Luiz: I don’t think that we have made any big mistakes in designing or implementing Lua.
We just learned how to evolve a language, which is much more than merely defining its
syntax and semantics and implementing it. There are also important social issues, such as
creating and supporting a community, with manuals, books, websites, mailing lists, chat
rooms, etc. We certainly learned the value of supporting a community and also about the
hard work that has to be put into that as well as into designing and coding.

Roberto: Luckily we did not make big mistakes, but I think we made many small ones
along the way. But we had the chance to correct them as Lua evolved. Of course this
annoyed some users, because of incompatibilities between versions, but now Lua is quite
stable.

Download at Boykma.Com

LUA

What do you suggest to become a better programmer?

Luiz: Never be afraid to start over, which of course is much easier said than done. Never
underestimate the need for attention to detail. Don’t add functionality that you think will
be useful some time in the future: adding it now may prevent you from adding a much
better feature later on, when it’s really needed. Finally, always aim for the simpler solu-
tion. As simple as possible, but not simpler, as Einstein said.

Roberto: Learn new programming languages, but only from good books! Haskell is a lan-
guage that all programmers should know. Study computer science: new algorithms, new
formalisms (lambda calculus, if you do not know it yet, pi calculus, CSP, etc.). Always try
to improve your own code.

What's the biggest problem with computer science and how we teach it?

Roberto: I guess there is no such thing as “computer science” as a well-understood corpus
of knowledge. Not that computer science is not science, but what is computer science and
what is not (and what is important and what is not) is still too ill defined. Many people in
computer science do not have a formal background in computer science.

Luiz: I consider myself as a mathematician interested in the role of computers in mathe-
matics, but of course I do like computers a lot. :)

Roberto: Even among those with a formal background there is no uniformity, we miss a
common ground. Many people think Java created monitors, virtual machines, interfaces
(as opposed to classes), etc.

Are a lot of CS programs glorified job-training programs?

Roberto: Yes. And many programmers do not even have a CS degree.

Luiz: I don’t think so, but I'm not employed as a programmer. On the other hand, I think
it would be wrong to require programmers to have CS degrees, or certifications, or any-
thing of that sort. A CS degree is no guarantee that one can program well, and many good
programmers don’t have a CS degree (perhaps this was true when I started; I'm probably
too old now). My point is that a CS degree is no guarantee that one can program well.

Roberto: It is wrong to require most professionals to have degrees, but what I meant was
that the “culture” in the area is too weak. There are very few things you can assume peo-
ple must know. Of course a hirer may demand whatever he wants, but there should not
be laws requiring degrees.

What is the role of math in computer science and programming in particular?

Luiz: Well, I'm a mathematician. I see math everywhere. I was attracted to programming
probably because it definitely has mathematical qualities: precision, abstraction, elegance.
A program is a proof of a complicated theorem that you can continually refine and
improve, and it actually does something!

166 CHAPTER SEVEN Download at Boykma.Com

Of course I don’t think in those terms at all when programming, but I think that learning
math is very important to programming in general. It helps you get into a certain frame of
mind. It’s much easier to program if you're used to thinking about abstract things that
have their own rules.

Roberto: According to Christos H. Papadimitriou, “computer science is the new math.” A
programmer can only go so far without math. In a broader view, both math and program-
ming share the same key mental discipline: abstraction. They also share a key tool: formal
logic. A good programmer uses “math” all the time, establishing code invariants, models
for interfaces, etc.

A lot of programming languages are created by mathematicians—maybe that is why
programming is difficult!

Roberto: I will leave this question to our mathematician. :)

Luiz: Well, I've said before that programming definitely has mathematical qualities: preci-
sion, abstraction, elegance. Designing programming languages feels to me like building a
mathematical theory: you provide powerful tools to enable others to do good work. I've
always been attracted to programming languages that are small and powerful. There’s
beauty in having powerful primitives and constructs, just like there is beauty in having
powerful definitions and basic theorems.

How do you recognize a good programmer?

Luiz: You just know it. Nowadays, I tend to recognize bad programmers more easily—not
because their programs are bad (although they frequently are a complicated, unstable
mess), but because you can sense they are not comfortable at programming, as if their
own programs were a burden and a mystery to them.

How should debugging be taught?

Luiz: I don’t think debugging can be taught, at least not formally, but it can be learned by
doing it when you are in a debugging session with someone else, perhaps more experi-
enced than you are. You can then learn debugging strategies from them: how to narrow
down the problem, how to make predictions and assess outcomes, what is useless and just
adds to noise, etc.

Roberto: Debugging is essentially problem solving. It is an activity where you may have
to use all intellectual tools you ever learned. Of course there are some useful tricks (e.g.,
avoid a debugger if you can, use a memory checker if programming in a low-level lan-
guage like C), but these tricks are only a small part of debugging. You should learn debug-
ging as you learn to program.

How do you test and debug your code?

Luiz: I try mainly to construct and test it piece by piece. I rarely use a debugger. When I
do, it’s for C code, never for Lua code. For Lua, a few well-placed print statements usually
work just fine.

Download at Boykma.Com LUA

167

Roberto: I follow a similar approach. When I use a debugger, frequently it’s only to do a
where to find where the code is crashing. For C code, a tool like Valgrind or Purify is essential.

What is the role of comments in the source code?

Roberto: Very small. I usually consider that if something needs comments, it is not well
written. For me, a comment is almost a note like “I should try to rewrite this code later.” I
think clear code is much more readable than commented code.

Luiz: I agree. I stick to comments that say something that the code does not make obvious.

How should a project be documented?

Roberto: Brute force. No amount of tools is a substitute for well-written and well-
thought-out documentation.

Luiz: But producing good documentation about the evolution of a project is only possible
if we have that in mind from the start. That did not happen with Lua; we never planned
Lua to grow so much and be as widely used as it is today. When we were writing the
HOPL paper (which took almost two years!), we found it hard to recall how some design
decisions had been made. On the other hand, if in the early days we had had meetings
with formal records, we would probably have lost some of the spontaneity and missed
some of the fun.

What factors do you measure during the evolution of a codebase?

Luiz: I would have to say “simplicity of the implementation.” With this comes speed and
correctness of the implementation. At the same time, flexibility is also an important point,
so that you can change an implementation if needed.

How do available hardware resources affect the mindset of programmers?

Luiz: I'm an old guy. :-) I learned programming on an IBM 370. It took hours between
punching cards, submitting it to the queue, and getting the printouts. I have seen all kind
of slow machines. I think programmers should be exposed to them, because not everyone
in the world has the fastest machines. People programming applications for the masses
should try them on slow machines to get a feel for the wider user experience. Of course,
they can use the best machines for development: it’s not fun having to wait a long time for
a compilation to finish. In these days of global Internet, web developers should try slow
connections, not the hyperfast ones they have at work. Aiming for an average platform
will make your product faster, simpler, and better.

In the case of Lua, the “hardware” is the C compiler. One thing that we learned in imple-
menting Lua is that aiming for portability does pay. Almost from the beginning, we have

implemented Lua in very strict ANSI/ISO C (C89). This has allowed Lua to run in special

hardware, such as robots, printer firmware, network routers, etc., none of which was ever
an actual target for us.

168 CHAPTER SEVEN Download at Boykma.Com

Roberto: One golden principle is that you should always treat hardware resources as lim-
ited. Of course they are al/ways limited. “Nature abhors a vacuum”; any program tends to
expand until it uses all available resources. Moreover, at the same time that resources
become cheaper in established platforms, new platforms emerge with severe restrictions.
It happened with the microcomputer; it happened with mobile phones; it is happening all
the time. If you want to be the first to market, you’d better be prepared to be very con-
scious about what resources your programs need.

What do the lessons about the invention, further development, and adoption of your
language say to people developing computer systems today and in the foreseeable future?

Luiz: I think that one has to keep in mind that not all applications are going run in powerful
desktop machines or laptops. Many applications are going to run in constrained devices such
as cell phones or even smaller devices. People that design and implement software tools
should be especially concerned about this issue, because you can never tell where and how
your tool is going to be used. So, design for using minimal resources, and you may be pleas-
antly surprised to see your tool used in many contexts that you did not have as a primary
goal and some that you did not even know existed. This has happened with Lua! And for a
good reason; we have an internal joke, which is not really a joke: when we discuss the inclu-
sion of a feature in Lua, we ask ourselves, “OK, but will it run in a microwave oven?”

Language Design

Lua is easy to embed and requires very few resources. How do you design for limited
resources of hardware, memory, and software?

Roberto: When we started, we did not have those goals very clear. We just had to meet
them to deliver our project. As we evolved, those goals became more clear to us. Now, I
guess the main point is to be economic in all aspects, all the time. Whenever someone sug-
gests some new feature, for instance, the first question is how much it will cost.

Have you rejected features because they were too expensive?

Roberto: Almost all features are “too expensive” to what they bring to the language. As
an example, even a simple continue statement did not pass our criteria.

How much benefit does a feature have to add to be worth its expense?

Roberto: No fixed rules, but a good rule is whether the feature “surprises” us; that is, it is
useful for things other than its initial motivation. That remind me of another rule of
thumb: how many users would benefit from the feature. Some features are useful for only
a small fraction of users, while others are useful to mostly everyone.

Do you have an example of a feature you added that is useful to more people?

Roberto: The for loop. We resisted even this, but when it appeared, it changed all the
examples in the book! Weak tables are also surprisingly useful. Not many people use them,
but they should.

Download at Boykma.Com LUA

170

CHAPTER SEVEN

You waited seven years after version 1.0 before adding the for loop. What made you
keep it out? What made you include it?

Roberto: We kept it out because we could not find a format for the for loop that was both
generic and simple. We included it when we found a good format, using generator func-
tions. Actually, closures were a key ingredient to make generators easy and generic
enough to use, because with closures the generator function itself can keep internal state
during a loop.

Is that another area of expense: updating code to take advantage of new features and
newly discovered best practices?

Roberto: People do not have to use new features.

Do people choose one version of Lua and stick with it throughout the lifetime of the
project, never upgrading?

Roberto: I guess most people in games do exactly that, but in other areas I think several
projects evolve the Lua version they use. As a counterexample, World of Warcraft did
change from Lua 5.0 to Lua 5.1! However, keep in mind that Lua now is much more sta-
ble than when it was younger.

How do you share development responsibilities—in particular, writing code?

Luiz: The first versions of Lua were coded by Waldemar in 1993. Since around 1995,
Roberto has written and maintained the bulk of the code. I'm responsible for a small part of
the code: the bytecode dump/undump modules and the standalone compiler, luac. We
have always done code revisions and sent suggestions by email to the others about changes
to the code, and we have long meetings about new features and their implementation.

Do you get much feedback on the language or the implementation from the users? Do you
have a formal mechanism for including user feedback in the language and its revisions?

Roberto: We joke that whatever we do not remember was not that important in the first
place. The Lua discussion list is quite active, but some people equate open software with a
community project. Once I sent the following message to the Lua list, which summarizes
our approach:

Lua is open software, but it has never been open developed. That does not mean we do not
listen to other people. We read practically every message in the mailing list. Several impor-
tant features in Lua started or evolved from outside contributions (e.g., metatables,
coroutines, and the implementation of closures, to name just some big ones), but ulti-
mately we decide. We do not do this because we consider our judgment better than oth-
ers’. It is only because we want Lua to be the language we want it to be, not to be the
most popular language in the world.

Because of this development style, we prefer not to have a public repository for Lua. We
do not want to have to explain every single change we make to the code. We do not
want to keep documentation updated all the time. We want freedom to follow strange
ideas and then to give up without having to explain every move.

Download at Boykma.Com

Why do you like to get suggestions and ideas, but not code? One thing that comes to my
mind is that maybe writing the code on your own allows you to learn something more
about the problem/solution.

Roberto: It is something like that. We like to fully understand what is going on in Lua, so
a piece of code is not a big contribution. A piece of code does not explain why it is the way
it is, but once we understand the underlying ideas, writing the code is fun we do not want
to miss.

Luiz: I think we also had concerns about including third-party code about which we
could not guarantee ownership. We certainly did not want to get drowned in the legal
processes of having people license their code to us.

Will Lua reach a point where you've added all of the features you want to add, and the
only changes are refinements to the implementation (LuaJIT, for example)?

Roberto: I feel we are at such a point now. We have added if not all, most of the features
we wanted.

How do you handle smoke testing and regression testing? One of the big benefits I've
seen from having an open repository is that you can get people performing automated
testing against almost every revision.

Luiz: Lua releases are not that frequent, so when a release does come out, it has been
tested a lot. We only release work versions (pre-alpha) when it’s already pretty solid, so
that people can see what the new features are.

Roberto: We do perform strong regression testing. The point is that, because our code is
ANSI C, we usually have very few portability problems. We do not need to test changes in
several different machines. I perform all regression tests whenever I change anything in
the code, but it is all automated; all I have to do is type test all.

When you find a recurrent problem, how do you recognize if the best solution is a local
workaround or a global fix?

Luiz: We always try to provide bug fixes as soon as bugs are found. However, since we
don’t release new versions of Lua frequently, we tend to wait until there are enough fixes
to justity the release of a minor version. We leave all improvements that are not bug fixes
to major versions. If the issue is complicated (which is quite infrequent), we provide a
local workaround in the minor version and a global fix in the next major version.

Roberto: Usually, a local workaround will get you really soon. We should go for a
workaround only if it is really impossible to do a global fix—for instance, if a global fix
demands a new, incompatible interface.

Would you still design for limited resources now, some years after you started?

Roberto: Sure, our mind is always focused on that. We consider even the order of fields
inside C structures to save a few bytes. :)

Download at Boykma.Com LUA

171

Luiz: And there are more people putting Lua in small devices today than ever before.

How does the desire for simplicity affect the language design from a user perspective? |
think of the support for Lua classes, which reminds me a lot of OO in C in some ways (but
much less annoying).

Roberto: Currently we have a rule of “mechanisms instead of policies.” That keeps the
language simple, but as you said, the user must provide his own policies. This is the case
with classes. There are many ways to implement them. Some users love this; others hate it.

Luiz: It does give Lua a do-it-yourself flavor.

Tcl took a similar approach, but it led to fragmentation, as every library or shop had its
own approach. Is fragmentation less of an issue because of Lua’s intended purpose?

Roberto: Yes. Sometimes it is a problem, but for many kinds of uses (e.g., games) this is
not an issue. Lua is mostly used embedded in some other application, and so the application
provides a firmer framework for unifying programming styles. You have Lua/Lightroom,
Lua/WoW, Lua/Wireshark—each has its own internal culture.

Do you consider Lua’s “we provide mechanisms” style of malleability a tremendous
benefit then?

Roberto: Not exactly. As most other things, it is a compromise. Sometimes it is very use-
ful to have policies ready for use. “We provide mechanisms” is quite flexible, but needs
more work and brings fragmentation of styles. It is also quite economic.

Luiz: On the other hand, sometimes it’s hard to explain this to users. I mean, to make
them understand what the mechanisms are and what the rationale for them is.

Does that work against code sharing between projects?

Roberto: Yes, frequently. It has hindered the growth of independent libraries, too. For
instance, WoW has tons of libraries (they even have an implementation for the traveling
salesman problem using genetic programming), but nobody uses that outside WoW.

Do you worry that Lua has splintered somewhat into WoW/Lua, Lightroom/Lua, etc.,
because of this?

Luiz: We do not worry: the language remains the same. The available functions differ. I
guess these applications benefit from this in some ways.

Are serious Lua users writing their own dialects on top of Lua?

Roberto: Maybe. At least we do not have macros. I guess with macros you could create a
real new dialect.

Luiz: Not a language dialect per se, but a dialect as domain-specific language implemented
with functions, yes. That was the goal of Lua. When Lua is used just for data files, it can
look like it’s a dialect, but of course they are just Lua tables. There are some projects that
do macros, more or less. I recall metalua, for instance. This is a problem with Lisp.

172 CHAPTER SEVEN Download at Boykma.Com

Why did you choose to provide extensible semantics?

Roberto: It started as a way to provide OO features. We did not want to add OO mecha-
nisms to Lua, but users wanted them, so we came up with this idea of providing enough
mechanisms for users to implement their own OO mechanisms. We still think this was a
good decision. Although this makes OO programming in Lua more difficult for beginners,
it brings a lot of flexibility to the language. In particular, when we use Lua mixed with
other languages (a Lua hallmark), this flexibility allows the programmer to fit Lua’s object
model with the object model of the external language.

How does the current environment of hardware, software, services, and networks differ
from the environment in which your system was originally designed? How do these
changes affect your system and call for further adaptations?

Roberto: Because Lua aims to a very high degree of portability, I would say that the cur-
rent “environments” are not that different from old ones. For instance, when we started
the development of Lua, DOS/Windows 3 were 16-bit machines; some old machines were
still 8 bit. Currently we do not have 16-bit desktops, but several platforms where Lua is
used (embedded systems) are still 16 bits or even 8 bits.

One big change was in C. When we started Lua, back in 1993, ISO (ANSI) C was not yet as
established as it is today. Many platforms still used K&R C, and many applications had
some complex scheme of macros to be compiled with K&R C and with ANSI C, the main
difference being the declaration of function headers. At that time, it was a bold decision to
stick with ANSI C.

Luiz: And we still haven't felt the need to move to C99. Lua is implemented in C89. Per-
haps we’ll have to use some parts of C99 (especially the new size-specific types) if glitches
surface in the transition to 64-bit machines, but I don’t expect any.

If you could build the Lua VM all over again, would you stick with ANSI C, or do you wish
there were a better language for low-level cross-platform development?

Roberto: No. ANSI C is the most portable language I know (currently).

Luiz: There are excellent ANSI C compilers out there, but even using their extensions
does not give us much improved performance.

Roberto: It is not easy to improve ANSI C and keep its portability and performance.
This is C89/90, by the way?
Roberto: Yes. C99 is not very well established yet.

Luiz: Plus I'm not sure C99 would bring us many additional features. I am especially
thinking about labeled gotos available in gcc as an alternative to switch (in the main switch
of the vm execution).

Roberto: This is something that could improve performance in many machines.

Download at Boykma.Com LUA

173

Luiz: We tested it early on, and someone else tested it recently, and the gains are not
spectacular.

Roberto: In part because of our register-based architecture. It favors less opcodes with
more work in each one. This decreases the impact of the dispatcher.

Why did you build a register-based VM?

Roberto: To avoid all those getlocal/setlocal instructions. We also wanted to play with the
idea. We thought that, if it did not work well, we could at least write some papers about it.
In the end, it worked quite well, and we wrote only one paper. :)

Does running in a VM help with debugging?

Roberto: It does not “help”; it changes the whole concept of debugging. Anyone who has
ever debugged programs in both compiled and interpreted languages (e.g., C versus Java)
knows they are miles apart. A good VM makes the language safe, in the sense that errors
can always be understood in terms of the language itself, not in term of the underlying
machine (e.g., segmentation fault).

When a language is platform-independent, how does this affect the debugging?

Roberto: Usually it eases debugging, because the more platform-independent a language
is, the more it needs a solid abstract description and behavior.

Considering that we are humans and we know for sure we are going to make mistakes
when writing software, have you ever thought about which features you needed to add
or remove to the language just to aid the debugging phase?

Roberto: Sure. A first step to aid debugging is good error messages.

Luiz: Error messages in Lua have improved since the earlier versions. We have moved from
the dreaded “call expression not a function” error message, which existed up until Lua 3.2, to
much better error messages such as “attempt to call global ‘" (a nil value)”. Since Lua 5.0, we
use symbolic execution of the bytecode to try and provide useful error messages.

Roberto: In the design of the language itself, we always try to avoid constructs with com-
plex explanations. If it is hard to understand, it is harder to debug.

What is the link between the design of the language and the design of programs written
with that language?

Roberto: At least for me, a main component when designing a language is user cases, that
is, considerations about how users would use each feature and the combination of fea-
tures of the language. Of course programmers will always find new ways to use a lan-
guage, and a good language should allow unanticipated usages, but the “normal” use of
the language follows what the designers intended when they created the language.

174 CHAPTER SEVEN Download at Boykma.Com

How much does the implementation of the language affect the design of the language?

Roberto: This is a two-way street. The implementation has a huge impact on the lan-
guage: we should not design what we cannot implement efficiently. Some people forget it,
but efficiency is always a (or the) main constraint in the design of any software. However
the design also may have a huge impact on the implementation. At first sight, several dis-
tinctive aspects of Lua come from its implementation (small size, good API with C, porta-
bility), but the design of Lua plays a key role to enable such implementation.

I read in one of your papers that “Lua uses a handwritten scanner and a handwritten
recursive descent parser.” How did you start thinking about the idea of building a parser
by hand? Was it clear since the beginning that it could have been much better than the
yacc-generated one?

Roberto: The first versions of Lua used both lex and yacc, but one of the main original
goals of Lua was to be used as a data-description language, not unlike XML.

Luiz: But much earlier.

Roberto: Soon people started using Lua in data files with several megabytes, and the lex-
generated scanner quickly became a bottleneck. It is quite easy to write a good scanner by
hand and that single change improved Lua performance by something like 30%.

The decision to change from yacc to a handwritten parser came much later, and was not
that easy. It started with problems with the skeleton code that most yacc/bison implemen-
tations use.

They were not quite portable at the time (e.g., several used malloc.h, a non-ANSI C
header), and we did not have a good control of their overall quality (e.g., how they han-
dled stack overflows or memory-allocation errors), and they were not reentrant (in the
sense of calling the parser during parsing). Also, a bottom-up parser is not as good as a
top-down one when you want to generate code on the fly, as Lua does, because it is diffi-
cult to handle “inherited attributes.” After we made the change, we saw that our hand-
written parser was a little faster and smaller than the yacc-generated one, but that was not
a main reason for the change.

Luiz: A top-down parser also allows better error messages.

Roberto: However I would never recommend a handwritten parser of any kind for a lan-
guage without a mature syntax. And for sure LR(1) (or LALR or even SRL) is much more
powerful than LL(1). Even for a simple syntax like Lua’s, we had to make some tricks to
have a decent parser. For instance, the routines for binary expressions do not follow the
original grammar at all, but instead we use a smart recursive priority-based approach. In
my compiler classes, I always recommend yacc to my students.

Download at Boykma.Com LUA

175

Do you have any interesting anecdote from your teaching experience?

Roberto: When I started teaching programming, the main computer facility for our stu-
dents was a mainframe. Once it happened that a program assignment from a very good
group failed even to compile. I talked to them, and they swore they tested their program
carefully, with several test cases, and it was working OK. Of course they and I were using
exactly the same environment, the mainframe. The mystery remained until a few weeks
later, when I learned that the Pascal compiler had been upgraded. The upgrade happened
between they finished their task and I started correction. Their program had a very small
syntactic error (an extra semicolon, if I recall correctly) that the old compiler did not
detect!

176 CHAPTER SEVEN Download at Boykma.Com

CHAPTER EIGHT

Haskell

Haskell is a purely functional, lazy language, originally designed as an open standard
for modern functional languages. This first Haskell Report appeared in 1990, and a
“standard” was adopted in 1998. But the language has evolved considerably over the
years, in particular with respect to its type system, which has many novel features.
Haskell has grown in popularity recently, with numerous and substantive libraries,
many real-world applications, significant improvements in implementations (most
notably, the preeminent Glasgow Haskell Compiler [GHC]), and a burgeoning, sup-
portive community of users. Haskell is particularly interesting for research into
domain-specific languages, concurrency, and the disciplined control of state. The high
level of abstractions it provides for solving problems is unparelleled—at least, once
you understand the Haskell approach to software design.

Editors’ Note: This interview is based on email exchanges with Paul Hudak, John
Hughes, Simon Peyton Jones, and Philip Wadler, and then integrated with a phone
interview with Simon Peyton Jones.

Download at Boykma.Com

177

A Functional Team

How do you develop a language in a team?

Simon Peyton Jones: We were fortunate in having a shared goal (that of developing a
common lazy functional programming language) and having broadly compatible technical
agendas. Our paper on the history of Haskell* describes various tactics that we employed
(face-to-face meetings, email, having an Editor and Syntax Tzar). We were also unencum-
bered by having existing users with the accompanying need for backward compatibility.
There were no companies involved, thus freeing us from dealing with (incompatible) cor-
porate goals.

John Hughes: We shared a vision. We were all passionate about functional program-
ming—there was tremendous excitement in the field at that time, and we all wanted to
contribute everything we could to make the functional programming dream a reality. Not
only that, but we respected each other very highly. I think both the passion and the
respect were essential to get us through the many inevitable awkward decisions that we
had to take.

Paul Hudak: You start with a common vision. Without that, I doubt that you’d get very
far. The original members of the Haskell Committee had a spectacularly common vision.

Add to that a lot of energy. The Haskell Committee had a ridiculous amount of energy.
They were like a herd of wild animals.

You also need humility. Like the mythical man-month, having more workers doesn’t mean
that things get done more quickly, because, despite the common vision, there will be differ-
ences. We had plenty of differences, but we had enough humility to make compromises.

Finally, you need leadership. We were lucky in that we were able to share the leader-
ship—I think that’s pretty unusual. There was always one person who was driving the
action, we always knew who that person was, and we trusted him to get the job done.

How did you merge your ideas into a cohesive whole?

Simon: We argued a lot, mostly by email. We wrote technical arguments in favour of our
point of view and circulated them. We were willing to compromise, because getting a lan-
guage was the important thing. And because we recognized that there were valid argu-
ments on the other side of the compromise, too.

John: Sometimes we included two overlapping approaches, as in the equational versus
expression style, both of which Haskell supports. Mostly, though, we would have long
technical discussions of competing ideas, hammering out a consensus in the end. I think
semantics played an important role here—although we never produced a complete formal

* “Being Lazy with Class: the history of Haskell,” Proc Third ACM Conference on the History of Pro-
gramming Languages (HOPL III), http://research.microsoft.com/~simonpj/papers/history-of-haskell/index.htm.

178 CHAPTER EIGHT Download at Boykma.Com

http://research.microsoft.com/~simonpj/papers/history-of-haskell/index.htm

semantics for all of Haskell, we regularly formalised fragments of the design, and semantic
ugliness was always a powerful argument against any proposal. Keeping one eye on for-
mal semantics helped guide us to a clean design.

Paul: Through debate—mostly at a technical level, where “right” and “wrong” were often
obvious, but also at a subjective/aesthetic/sometimes-deeply-personal level, where there
was no right or wrong. These debates seemed endless (some are still raging today), but
somehow we pushed through them. On seemingly insignificant issues we would often
rely on our leadership to make final decisions. For example, we had a “syntax czar” who
would make final decisions on syntactic minutiae.

How do you recognize the best ideas, and how do you “manage” features that you don’t
like?

Paul: The best ideas were obvious—as were the worst! The harder issues were those with
no clear best solution.

Simon: For features we didn’t like, we just argued against them. If enough people did
that, it was hard for the idea to make headway. But in fact I can’t recall an idea that was
strongly pushed by one person or a small subgroup but was ultimately voted out. Perhaps
that’s a measure of the shared technical background that we brought to the project.

In sort, disagreement was not the problem, for the most part. Rather, the hard thing was
finding willing volunteers to do the minutiae. Languages have lots and lots and lots of
details. What happens in this or that obscure case? Libraries have lots of details. This is not
romantic stuff, but it’s important.

John: You spot the best ideas by acclamation! The class system was one of those: when
we saw it, we all just drooled. That’s not to say there wasn’t a lot of hard work after that,
though, dealing with details like default instances and the interaction with modules.

As for features we don’t like, almost by definition they are the most intensively discussed.
Users complain about them all the time, and every time the language is revised someone is
bound to say, “Can’t we finally get rid of X?”, whatever X may be, and the feature gets dis-
cussed all over again. That means, at least, that we know very clearly why we have the
features we don't like, and why we can’t get rid of them.

In some cases, we got these things right from the start—for example, the ever-unpopular
“monomorphism restriction” has remained in the same form since the beginning, quite
simply because it solves a real problem, and no one has found a better way to do it. In
other cases, we revised decisions in the light of experience from the field. We changed the
treatment of explicit strictness after the initial design proved to hinder program evolu-
tion—at a slight cost in semantic elegance, one of the few occasions we’ve done that. We
removed overloading of list comprehensions after it proved confusing to beginning program-
mers. The fact that we’ve been able to go back and fix mistakes in the light of experience,
even making incompatible changes to the language, has improved the design in the end.

Download at Boykma.Com HASKELL

179

Were there advantages in being in a group? Did it oblige you to compromise?

Simon: Being a group was the most important thing! We each had our own languages,
and we believed that having a common language would stop us duplicating effort, and help
our users believe in us because we all supported one language. This hope has been amply
repaid—Haskell has been a tremendous success by any measure, and dramatically so in
terms of our original expectations.

Paul: It was a clear advantage. Despite (again) the common vision, we each brought a dif-
ferent skill set to the table. We trusted one another, and learned a lot from each other. It
was a fantastic interaction between bright, energetic, and hardworking individuals.
Haskell could not possibly have been designed by a single person.

John: Compromise can be a good thing!

Working as a group was definitely a big advantage. We had complementary experience
and skills, and I think designing a language as a broader group definitely led to a more
broadly useful result than any one of us would have achieved alone. One person might
have designed a smaller, simpler, perhaps even more elegant language—but I don’t think
it would have been as useful.

Also, every tricky design decision could be, and was, examined and reexamined from
many possible angles. Many heads are better than one. A decision that looks quite sensible
to one person may be obviously flawed to another—time and time again we would reject
an idea after a serious flaw was exposed in this way, only to find a better idea as a result.
I think the care we took is reflected strongly in the quality of the design. It sounds quite
dialectical, doesn't it: thesis + antithesis = synthesis.

Trajectory of Functional Programming

What makes functional programming languages different from other languages?

Simon: Oh, that’s easy: control of side effects.

John: Well, careful control of side effects, obviously. First-class functions (although these
are finding their way into more and more imperative languages, too). Concise notations
for purely functional operations—everything from creating a data structure, to list com-
prehensions. I think lightweight type systems are also very important—whether they're
the purely dynamic type systems of Scheme and Erlang, or the polymorphic inference-
based systems of Haskell and ML. Both are lightweight in the sense that the types don’t get
in your way, even when you make heavy use of higher-order functions—and that’s really
at the heart of functional programming.

I think lazy evaluation is also important, but of course it’s not found in every functional
language.

Paul: Abstraction, abstraction, and abstraction—which, for me, includes higher-order
functions, monads (an abstraction of control), various type abstractions, and so on.

180 CHAPTER EIGHT Download at Boykma.Com

What are the advantages of writing in a language without side effects?

Simon: You only have to reason about val/ues and not about state. If you give a function
the same input, it’ll give you the same output, every time. This has implications for rea-
soning, for compiling, for parallelism.

As David Balaban (from Amgen, Inc.) puts it, “FP shortens the brain-to-code gap, and that
is more important than anything else.”

John: Well, now, there are virtually no such languages. Haskell programs can have side
effects, if they have the right type, or use “unsafe” operations. ML and Erlang programs
can have side effects. It’s just that, rather than being the basis for all programming, side
effects in these languages are the exception; they are discouraged, and carefully con-
trolled. So I'm going to reinterpret your question as: what are the advantages of program-
ming largely without side effects?

Many people would start talking about reasoning now, and so will I, but from a very prac-
tical perspective. Think of testing a function in an imperative language. When you test
code, you need to supply a variety of different inputs, and check that the outputs are con-
sistent with the spec. But in the presence of side effects, those inputs consist not only of
the function’s parameters, but also of those parts of the global state which the function
reads. Likewise the outputs consist not only of the function’s result, but of all those parts
of the state which it modifies. To test the function effectively, you need to be able to place
test inputs in the parts of the state that it reads, and read the parts of the state that it mod-
ifies...but you may not even have access to those parts directly, so you end up having to
construct the test state you want indirectly, by a sequence of other function calls, and
observing the effect of the function by making more calls after the function you tested, to
extract the information you expect it to have changed. You may not even know exactly
which parts of the state are read and written! And in general, to check a function’s post-
condition, you need access to both the state before it ran, and the state afterward—at the
same time! So you should really copy the state before the test, so you have access to all the
relevant information afterward.

Compare this to testing a pure function, which only depends on its arguments, and whose
only effect is to deliver its result. Life is much, much simpler. Even for programs that must
perform a lot of side effects, it makes sense to factor out as much as possible of the func-
tionality into highly testable side effect-free code, with a thin side-etffecting wrapper
around it. Don Stewart gives a lovely description of this approach applied to the XMonad
window manager in a recent blog post.*

Passing everything a function depends on as arguments tends to clarify dependencies, too.
Even in Haskell, you can write programs that manipulate one big state, which is passed as
an argument to all your functions and returned as a result by all those that modify it. But
you tend not to do that: you pass in only the information the function needs, and let it

* http://cgi.cse.unsw.edu.au/~dons/blog/2007/06/02#xmonad-0.2

Download at Boykma.Com HASKELL

181

http://cgi.cse.unsw.edu.au/~dons/blog/2007/06/02#xmonad-0.2

return just the information the function itself generates. That makes dependencies much
clearer than in imperative code, where any function could in principle depend on any part
of the state. And forgetting about such dependencies is precisely what can cause the most
troublesome bugs!

Finally, as soon as you start programming with side effects, evaluation order becomes
important. For example, you must open a file handle before doing any file operations on
it, you must remember to close it exactly once, and you must not use it after closing it.
Every stateful object imposes restrictions on the order in which you may use its API, and
those restrictions are then inherited by larger code fragments—for example, such-and-
such a function must be called before the logfile is closed, because it sometimes writes a
log entry. If you forget one of those restrictions, and invoke functions in the wrong order,
then BANG!, your program fails. This is an important source of bugs. Microsoft’s Static
Driver Verifier, for example, is essentially checking that you respect the restrictions
imposed by stateful objects in the Windows kernel. Program without side effects, and you
just don’t have to worry about this.

The most awkward bugs I've had to deal with recently can be traced to Erlang libraries
with a stateful API, which I'm using in code with a very complex and dynamically deter-
mined execution order. In the end, the only way I could make my code work was to build
a side effect-free API on top of the standard one. I'm afraid I'm just not clever enough to
make side-effecting code work! (Wait a minute, perhaps imperative programming would
be easier without years of functional programming experience....) :-)

Oh, and did I mention easy parallelization?

Paul: Sanity, and the joy of solving a puzzle! :-)

John mentioned parallelism. Are there other changes in the computer field that make
functional programming even more desirable and needed than before?

Simon: I believe that a long-term trend is that it will become more and more important to
control side effects, in programming languages of all kinds. This five-minute video
explains what I mean:

http://channel9.msdn.com/ShowPost.aspx?PostID=326762

Is the desire for a lack of side effects a natural evolution of the development of structured
programming, as when we moved to higher languages with higher-order control
structures and loops instead of just jumps, goto statements. Is programming without side
effects the next step beyond that?

Simon: That could be one lens through which you might look at it. The reason I'm a little
cautious is because people mean very different things when they say “structured program-
ming.” I always think you have to be rather careful just to get your vocabulary straight
before you start making what seems to be compact sound bites.

182 CHAPTER EIGHT Download at Boykma.Com

http://channel9.msdn.com/ShowPost.aspx?PostID=326762

If you recall Dijkstra’s classic letter, “Goto Considered Harmful,” he was saying, “Take
away goto in order to make your programs easier to comprehend, easier to compile, and so
forth.” Then you could regard purity as a way to take away assignment in order to make
your programs easier to read about. But I think it’s a mistake to regard functional pro-
gramming as solely an exercise in aestheticism (“we’ll take away these sinful, bad things
and leave you with a boring and difficult life”).

Rather than just saying, “We’re going to take things away from you,” we say, “We’ll take
some things away from you, but we’ll give you in exchange lazy evaluation and higher-
order functions and an extremely rich type system and this monad story.” This change
does force you to think very differently about programming, so it’s a not a painless transi-
tion, but it is one that is rich in rewards.

How does error handling change in functional programming?

Simon: You can think about errors in a new way, more like “error values” than “excep-
tion propagation.” An error value is like a NaN in floating point. This gives a more value-
oriented and less control-flow-oriented view of error handling, which is on the whole a
good thing. In consequence, the type of function is much more likely to express its error
behaviour. For example, rather than:

item lookup(key) /* May throw not-found */

we have:
lookup :: Map -> Key -> Maybe Item

where the Maybe data type expresses the possibility of failure, through the medium of values.

How does debugging change in functional programming?

Paul: Well, first of all, I've always felt that the “execution trace” method of debugging in
imperative languages was broken, even for imperative programs! Indeed, some well-
known imperative programmers eschewed this method in favor of more rigorous methods
based on testing or verification.

Now, one nice thing about functional languages, especially lazy functional languages, is
that it doesn’t have any particularly useful notion of an “execution trace,” so that method
of debugging isn’t a very good option. GHC has a trace facility for the graph reduction
engine that underlies its evaluation mechanism, but in my opinion this reveals far too
much about the evaluation process. Instead, people have designed debuggers such as Buddha
based on “data dependencies,” which is much more in line with the declarative principles
of functional programming. But, perhaps surprisingly, in all my years of Haskell program-
ming, I have never in fact used Buddha, or GHC’s debugger, or any debugger at all for that
matter. I find that testing works just fine; test small pieces of code using QuickCheck or a
similar tool to make things more rigorous, and then—the key step—simply study the
code to see why things don’t work the way I expect them to. I suspect that a lot of people
program similarly, otherwise there would be a lot more research on Haskell debuggers,

Download at Boykma.Com HASKELL

which was a popular topic for a while, but not anymore. It would be interesting to do a
survey to find out how people actually debug Haskell programs.

That said, there is another kind of debugging that has gotten a lot more attention, namely,
profiling of both time and space, but in particular space. Space leaks are the hidden scourge
of lazy functional programming, and space profiling is an important tool for getting rid of
them.

Would functional programming languages be easier to learn if we came to them without
years of imperative language experience?

Simon: I'm not sure. The ability to learn FP seems to be strongly correlated with being a
smart programmer generally. There certainly is some brain-rewiring to do, but smart pro-
grammers can do that. It think it’s a cop-out to blame the niche-status of FP on the fact
that most programmers have their initial training in imperative techniques.

A stronger reason is that there’s a tremendous lock-in effect. Lots of people use C++, so
C++ is fantastically well supported by compilers, tools, the programmer pool, etc. But even
that isn’t a very strong reason: look at the rapid success of Python or Ruby.

John: No, this is a myth. A huge amount of experience transfers straight over—whether
it’s understanding the importance of abstraction in programming, knowledge of algo-
rithms and data structures, or even just understanding that programming languages are
formal languages. The C/C++ hackers that I teach Haskell to do significantly better in gen-
eral than raw beginners. They understand what a “syntax error” is; they may not under-
stand the type system, but they know what a type error is; they know that giving variables
suggestive names will not help the computer “understand” their program and fix their
bugs!

I think the myth arises because imperative programmers find functional programming
more difficult than they expect. Experienced programmers are used to picking up new lan-
guages easily, because they can directly transfer basic concepts such as variables, assign-
ments, and loops. That doesn’t work with a functional language: even experienced
programmers find they need to learn some new concepts before they can do anything at
all. So they think functional programming is “difficult”—at the same time as they are pick-
ing it up much faster and more easily than complete beginners do!

Paul: I used to say that entrenched habits made the move hard, but I'm not so sure any-
more. I think that the best, smartest, most experienced programmers (of any kind) find it
easy to learn and love Haskell. Their experience helps them to appreciate abstraction, the
rigorous control of effects, a strong type system, and so on. Less experienced programmers
often do not.

Why do you think no functional programming language has entered the mainstream?

John: Poor marketing!

18% CHAPTER EIGHT Download at Boykma.Com

I don’t mean propaganda; we’ve had plenty of that. I mean a careful choice of a target
market niche to dominate, followed by a determined effort to make functional program-
ming by far the most effective way to address that niche. In the happy days of the 80s, we
thought functional programming was good for everything—but calling new technology
“good for everything” is the same as calling it “particularly good at nothing.” What'’s the
brand supposed to be? This is a problem that John Launchbury described very clearly in
his invited talk at ICFP. Galois Connections nearly went under when their brand was
“software in functional languages,” but they’ve gone from strength to strength since
focusing on “high-assurance software.”

Many people have no idea how technological innovation happens, and expect that better
technology will simply become dominant all by itself (the “better mousetrap” effect), but
the world’s just not like that.

Books such as Moore’s Crossing the Chasm [HarperBusiness] and Christensen’s The Innova-
tor’s Dilemma [Collins Business] have influenced my thinking on this tremendously. If
there was a target niche back in the 80s, it was parallel programming—but that turned out
not to be at all important until just recently (with the advent of multicores), thanks to the
immense ingenuity of computer architects. I think this was more important than techno-
logical problems, admittedly also important, such as low performance.

Paul: Because it’s too radically different from conventional programming. That difference
makes it hard to accept, hard to learn, and hard to support (with libraries, implementa-
tions, etc.).

Is that situation changing?

Simon: Functional programming is a long-term bet. It’s a radically different way to think
about the whole enterprise of programming. That makes it hard for people to learn; and
even when learnt, it’s hard to adopt because it’s revolutionary rather than evolutionary.

It’s still not clear whether FP will ultimately become mainstream. What is clear is that FP
has influenced mainstream languages, and furthermore that influence is increasing.
Examples include: garbage collection, polymorphic types (“generics”), iterators, LINQ,
anonymous functions, and more.

There are two reasons FP is becoming more influential. First, as programs scale up, and
people care more and more about correctness, the costs of unrestricted side effects and the
benefits of a more functional style become more apparent. Second (although perhaps of
more short-term impact), multicores and parallelism have renewed interest in pure com-
putation, or at least computation where side effects are carefully controlled. A recent
example is Software Transactional Memory (STM).

All that said, there has been substantial growth in the Haskell community of late, and it’s
not out of the question that some recognizably functional language might eventually
make it into the mainstream. (But my guess is that even if it does it will be called Java3
and will look syntactically like an OO language.)

Download at Boykma.Com HASKELL

John: Sure. Look at Erlang—a language focused single-mindedly on a very specific niche,
the robust distributed systems needed in telecom systems, with a huge collection of librar-
ies for every telecom-related task, and the great good fortune that Internet servers need
essentially the same characteristics. Erlang may not be mainstream yet even in telecoms,
but it has a heck of a lot of users there, and exponential growth. Choosing Erlang for a
telecom application needn’t be a controversial choice today—it’s proven technology.

Haskell is not quite as far along, but the level of interest is rising fast, and all kinds of
unexpected applications are popping up. Likewise OCaml.

Multicores provide a unique opportunity for functional programming—there’s a wide-
spread recognition that we don’t know how to program them, and many, many people
are starting to consider alternative ways of programming parallel systems, including func-
tional programming. The funny thing is that you still hear automatic parallelization of leg-
acy code described as a “short-term” solution, whereas functional programming is
described as an attractive “long-term” approach. But the fact is that if you started develop-
ing a product today that must exploit eight cores when it is released in a year’s time, then
writing sequential C and hoping for automatic parallelization to solve your problems
would be an extremely high-risk strategy. Choosing Concurrent Haskell or SMP Erlang is
no-risk, because the technology already works today.

There are already dual-core Erlang products on the market that go twice as fast, thanks to
the extra core. In a few short years from now, easy parallelization is going to be a critical
advantage, and functional languages have an opportunity to come out of the resulting sea
change very well indeed.

Paul: Yes, the environment for potential adoption is changing for several reasons:

e Other languages have adopted some of the good ideas, so it’s no longer as radical a
change.

e Programmers entering the workforce for the past 15 years have had more exposure to
modern PL ideas, to mathematics, to formal methods—thus again making the ideas not
quite as radical.

e There are many more libraries, implementations, and related tools to make using the
language easier and more practical.

e There is now a nontrivial body of successful applications written in Haskell (or other
FL), thus giving people confidence that It Will Work.

Does the fact that we still find functional programming useful after 50 years tell us
something about the state of computing?

Simon: I think it tells us something about functional programming. I love FP because it is
both principled—staying true to its foundations—and practically applicable.

By “principled” I mean that the languages and their implementations (especially pure lan-
guages like Haskell) are based very closely on unusually simple mathematical foundations,
unlike powerful but much more ad hoc languages like Python or Java. That means that FP

186 CHAPTER EIGHT Download at Boykma.Com

isn’t going to go out of fashion—FP represents a fundamental way of thinking about com-
putation, so it’s not a fashion item at all.

By “practically applicable” I mean that FP is much, much more usable now than it was
even 10 years ago, because of vastly improved implementations and libraries. That makes
the benefits of a principled approach available to a much wider audience.

As people become more concerned about:

e Security
e Parallelism

e Bugs due to side effects

FP is going to be more and more visible and useful. If you like, computing is moving on to
the point where the costs of FP are less important than they were, and the benefits are
more valuable.

The Haskell Language

Referring back to John’s earlier answer, what made you “drool” when you were designing
the class system?

Simon: We knew we had a bunch of problems surrounding how to take equality over
arbitrary types, how to show and print arbitrary types, and how to do numerics. We knew
we wanted integers and floats and double-precision numbers and arbitrary position inte-
gers. We did not want the programmer to have to write plus int and plus float and plus

arbitrary precision integer.

We knew we wanted some way you could just write A + B and get whatever was correct.
The ML solution to that problem was to allow you to write A + B, but the type of addition
has to be resolved locally. If you write f(x,y) = x + y + 1, the system says, “Ah, you need to
tell me more. You need to give a type signature to () so I can know whether this plus is
an integer plus or a float plus or a double plus.”

That makes you carry type information around in lots of places in your program.

Simon: Worse than that. It might be useful to call this particular function on floats or on
integers or on doubles. It’s a pain to have to fix it to be one type.

You lose the genericity. Instead, you must write three functions: f float, f double, and f
integer, all with the same body but different type signatures. Then when you call them,
well, which one of these should the compiler call? You’'ve got the plus int problem back
again, but one level up.

That hurt us. That didn’t feel beautiful. That didn’t feel right. That is what the class system
solved, because it said you can write f(x,y) = x + y + 1 once for all. It gets the type Numa =>
a -> a ->a, and it'll work for any numeric type, including ones you haven’t yet thought of!

Download at Boykma.Com HASKELL

187

They must be instances of Num, but the beautiful thing is that you can invent a type later—
10 years after the Haskell standard was nailed down and the Num class was defined and this
f function was written. You can make it an instance of Num and your old function will work
with it.

That’s where the drooling came from. We had what seemed like an intractable problem
that was just solved. The original work was by Philip Wadler and Stephen Blott.

It solved the equality problem, too. ML has a different solution for equality. If you define a
member with type member :: [a] -> Bool that asks you whether a value is a member of a list,
the operation requires you to compare the values of type a for equality. One possible solu-
tion is to say every value supports equality, but we don’t like that. You can’t reasonably
compare functions for equality.

ML says “Ah, we'll give you a special kind of type variable called 'a. Member has type
member :: a -> ['a] -> Bool. This 'a is called an equality-type variable. It ranges only over
types that admit equality. So now you can apply member to an integer or to a character,
but you cannot apply member to a function, because then 'a will be instantiated by a
function; that’s not legal.

Their ML has a different solution from the one for overloaded numerics, but it also per-
vades the type system, so these 'as go everywhere in the description. It solves a very spe-
cific problem of checking equality in a completely different way, but it doesn’t help you
with ordering. What happens if you wanted to sort a list? Now you don’t have just equal-
ity but ordering. Type classes have solved that problem, too. In Haskell you write

member :: Eq a => a -> [a] -> Bool

sort :: Ord a => [a] -> [a]
thereby saying precisely what properties the type a must have (equality or ordering,
respectively).

That’s why we drooled, because it was a single powerful type system-level mechanism
that solved multiple problems to which we had otherwise seen only ad hoc and varying
solutions. One hammer that cracked a whole bunch of nuts, and no nut with good solu-
tion, even considered by itself.

Philip Wadler: One nice thing about type classes is that they went on to influence the
way that generics work in Java. A Java method like:

public static <T extends Comparable<T>> T min (T x, T y) {
if (x.compare(y) < 0)
X;
else
y;
}

is very similar to the Haskell method:
min :: Ord a => a -> a -> a

min x y = if x <y then x else y

188 CHAPTER EIGHT Download at Boykma.Com

save that the latter is shorter. In general, saying that a type variable extends an interface
(which usually is parameterized over the same type variable) in Java serves the same role
as saying that the type variable belongs to a type class in Haskell.

I'm pretty sure there was a direct influence here, because (with Martin Odersky, Gilad
Bracha, and many others) I was involved in the team that designed generics for Java. I
think that generics in C# were in turn influenced by this design, but I wasn’t involved, so I
can’t say for sure. The new idea of “concepts” in C++ is also very similar, and their papers
cite type classes in Haskell for purposes of comparison.

When do you think Haskell programmers appreciate its strong typing?

Simon: Haskell’s type system is rich enough to express a lot of the design.

Type checking is not just a way to avoid stupid mistakes like 5+True. It gives you a whole
level of abstraction for describing and talking about a program’s design and architecture,
because where OO folk draw UML diagrams, Haskell folk write type definitions (and ML
folk write module signatures). This is much, much better, because it’s precise and machine
checkable.

Philip: Here’s an old anecdote.” Software AG marketed a commercial database product
called Natural Expert, where data was queried and manipulated by their own home-
grown functional language, similar to Haskell. They had a training course that lasted one
week. At the beginning of the course, developers would complain that the type checker
was giving them an awful lot of type errors. By the end of the course, they discovered that
most of the programs they wrote worked perfectly as soon as they got them past the type
checker. So the types were giving them all the debugging they needed. In short, at the
beginning of the week they were thinking of types as their enemy, but by the end they
were thinking of them as their friend.

I'm not trying to say that any program you write will work as soon as you get it through
the type checker. But types do catch an incredible number of errors and make debugging
an awtul lot easier.

Types seem to be particularly important as one begins to make use of more sophisticated
features. For instance, using higher-order functions is much easier when you have types
to keep things straight. Polymorphic functions reveal a huge amount of information in
their type. For instance, if you know that something has type

1 :: (Int -> Int) -> [Int] -> [Int]

(take a function from integer to bool and a list of integers, and return a list of integers), it
could be doing almost anything, but if it has type

m :: forall a b. (a -> b) -> [a] -> [b]

* Hutchison, Nigel et al. “Natural Expert: a commercial functional programming environment,” Journal
of Functional Programming 7(2), March 1997.

Download at Boykma.Com HASKELL

190

CHAPTER EIGHT

(for any types a and b, take a function from a to b and a list of a and return a list of b) then
you know an awful lot about it. In fact, the type itself furnishes a theorem* that the func-
tion satisfies, and from this type you can prove that:

mf xs =map £ (m id xs) = m id (map f xs)

where map applies a function to each element of a list to get a new list, and id is the identity
function. Most likely m is itself just map, so (m id) will be the identity. But possibly m also
rearranges elements—for instance, it might reverse the input list and then apply the func-
tion, or apply the function and then take every other element of the result. But that’s all it
can do. The types guarantee that it must apply the function to an element of the input list
to get an element of the output list, and that it cannot look at the value of an element to
decide what to do with it, only where it is in the list.

The most incredible thing to me about type systems is that they have this very tight con-
nection to logic. There is this deep and beautiful property, called “propositions-as-types”
or the Curry-Howard isomorphism, that declares that every program is like a proof of a
proposition, and that the type of the program is like the proposition that the program
proves, and that evaluating a program is just like simplifying a proof. The most fundamen-
tal ways of structuring data—records, variants, and functions—correspond exactly to the
three most fundamental constructs in logic—conjunction, disjunction, and implication.t

It turns out that this works for all sorts of logical systems and programs, so it is not just a
fragile coincidence but a deep and valuable principle for designing typed programming
languages. Indeed, it gives you a recipe for design: think of a type, add constructors to the
language to build values of that type and add deconstructors to the language to take apart
values of that type, while adhering to the law that if you build something and take it apart
you get back what you started with (this is called a beta law) and if you take something
apart and build it up again you also get what you started with (this is called an eta law). It
is just incredibly powerful and beautiful. Lots of time, when designing something, it feels
arbitrary, that there are five different ways you could do it and it is not clear what is best.
But this tells us that there is a core to functional languages that is not arbitrary at all.

Now we are just getting to the point where it is beginning to become common for com-
puter scientists to type their proofs into a computer, so the computer can check whether
they are true, and the procedure is based on the same principles and type systems that
functional languages are based on, because of this deep connection between programs and
proofs, and between types and propositions. So we are beginning to see things merge, and
types will let you describe more and more of how your program behaves, and the com-
piler will be able to ensure more and more properties of your programs, and it will
slowly become more common to prove properties of your program as you write it. The
U.S. government sometimes insists on proofs of security properties for military software.

* Wadler, Philip. “Theorems for Free,” 4th International Conference on Functional Programming
and Computer Architecture, London, 1989.

+ Wadler, Philip. “New Languages, Old Logic,” Dr. Dobb’s Journal, December 2000.

Download at Boykma.Com

We will see this trend continue. Right now, operating systems don’t give very strong guar-
antees about security, but I think we will see that change, and type systems will be a very
important part of that.

Is laziness exportable to other programming languages, or does it fit better in Haskell
because of all its other features?

John: Laziness results in complex and unpredictable control flow. That’s not a problem in
Haskell, because evaluation order can’t affect the result—you can let the control flow get
as complex as you like, and it doesn’t atfect how easy or difficult it is to get your code
working. Laziness can be, and has been, added to other languages, and it’s not that hard to
simulate, either. But when laziness and side effects mix, all hell breaks loose. Making that
kind of code work is virtually impossible, because you just cannot hope to understand
why the side effects are occurring in the order they do. I've experienced this in Erlang, in
which I was simulating laziness in code that used a library with a side-effecting interface.
In the end, the only way I could make the code behave the way I wanted it to was to build
a purely functional interface to the library on top of the side-effecting one, so that my lazy
code could be side effect-free.

So I think the answer to your question is: yes, laziness can be exported to other lan-
guages—but programmers who use it will have to avoid side effects in that part of their
code. LINQ is a good example, of course.

Are there other features of Haskell that other languages might borrow to make them more
useful or safer?

Philip: Several features from Haskell have been incorporated or are being incorporated
into a number of mainstream languages.

Functional closures (lambda expressions) have appeared in a large number of languages,
including Perl, JavaScript, Python, C#, Visual Basic, and Scala. Inner classes were intro-
duced to Java as a way to simulate closures, and there is a widely debated proposal for
adding proper closures (similar to those in Scala) to Java. The influence toward closures
comes not just from Haskell, but from all functional languages, including Scheme and the
ML family.

List comprehensions appear in Python, C#, and Visual Basic (both in connection with
LINQ), and Scala, and are planned for Perl and JavaScript. Haskell did not introduce list
comprehensions, but did a lot to popularize them. The comprehensions in C#, Visual
Basic, and Scala also apply to structures other than lists, so they more closely resemble
monad comprehensions or “do” notation, both of which were introduced in Haskell.

The generic types in Java were strongly influenced by polymorphic types and type classes
in Haskell; T helped design the generics in Java, and also coauthored a book about them
published by O’Reilly.* The features in Java in turn inspired those in C# and Visual Basic.

* Naftalin, Maurice and Philip Wadler. Java Generics and Collections (O'Reilly, 2000).

Download at Boykma.Com HASKELL

191

192

CHAPTER EIGHT

Type classes also appear in Scala. Now C++ is looking at incorporating a feature called
“concepts” that is also closely related to type classes. Haskell has also influenced a number
of less widely used languages, including Cayenne, Clean, Mercury, Curry, Escher, Hal, and
Isabelle.

John: In addition: anonymous delegates in C# and list comprehensions in Python. Func-
tional programming ideas are popping up all over the place.

Paul: I have read many accounts of people who learn Haskell but rarely use it in their real
programming jobs, but claim that it changes (for the better) the way they think and pro-
gram in an imperative language. And Haskell’s influence on mainstream languages, and
more recent new languages, has been huge. So we must be doing something right, and we
seem to have influenced the mainstream, even if we are not in the mainstream.

What is the link between the design of a language and the design of a software written
with that language?

Simon: The language in which you write profoundly affects the design of programs writ-
ten in that language. For example, in the OO world, many people use UML to sketch a
design. In Haskell or ML, one writes type signatures instead. Much of the initial design
phase of a functional program consists of writing type definitions. Unlike UML, though, all
this design is incorporated in the final product, and is machine-checked throughout.

Type definitions also make a great place to write down invariants of the type; e.g., “this list
is never empty.” Currently, these claims are not machine-checked, but I expect they
increasingly will be.

Robust types change the face of program maintenance. You can change a data type and
know that the compiler will point to all the places that must change in consequence of it.
For me, this is one of the biggest single reasons to have expressive types; I cannot imagine
making substantial changes to a large dynamically typed program with nearly the same
degree of confidence.

Using a functional language dramatically changes the approach to testing, as John elo-
quently described earlier.

Using a functional language strongly pushes one in the direction of purely functional data
structures, rather than data structures that are mutated in place. That can have a profound
effect on the design of the program. You can write imperative programs in Haskell, but

they look clumsy, and that guides programmers in the direction of purity where possible.

Paul: I like Simon’s reply, although he is focusing mostly on how Haskell (or other FL)
affects the design of software. The dual question is, how does a software application affect
the design of the language? Haskell, and most other FLs, is meant to be general purpose,
of course, but one of the cool things about applications written in Haskell in recent years is

Download at Boykma.Com

how many of them are based on a domain-specific language (DSL) “embedded” in Haskell
(we often call these “DSELs”). There are tons of examples of this—in graphics, animation,
computer music, signal processing, parsing, printing, financial contracts, robotics, and
many more—and a ton of libraries whose designs are based on this concept.

Like the real-estate agent who says that “location, location, location” are the three most
important things in real estate, I think that “abstraction, abstraction, abstraction” are the
three most important things in programming. And to me, a well-designed DSL is the ul/ti-
mate abstraction of a domain—it captures just the right amount of information, no more
and no less. What is so great about Haskell is that it provides a framework for creating
these DSLs easily and effectively. It’s not a perfect methodology, but it’s pretty darn good.

Philip: Functional languages make it easy to extend the language within the language.
Lisp and Scheme are brilliant examples of this; read Paul Graham* on how Lisp was the
secret weapon in building one of the earliest web applications (which later became a
Yahoo! product), and in particular how Lisp macros were key to building this software.
Haskell also provides a number of features that make it easy to extend the power of the
language, including lambda expressions, laziness, monad notation, and (in GHC) template
Haskell for metaprogramming.

Paul already mentioned how this makes Haskell a favorite language for embedding

domain-specific languages. But it also shows up at a less grandiose level, when one builds
small libraries for parser combinators or pretty printing. If someone wants to truly under-
stand the power of functional programming, those two examples are a great place to start.

Laziness in Haskell also has a profound effect on how one writes programs, as it allows
you to decompose your problem in ways that are hard to achieve otherwise. One way I
like to think of it is that laziness allows one to transmute time into space. For instance,
instead of thinking of how to deliver values in sequence (time), I can return a list contain-
ing all the values (space)—laziness guarantees that in fact the values in the list will be
computed one by one, as needed.

Thinking about space is often easier than thinking about time: space can be visualised
directly, whereas visualising time requires animation. Contrast browsing a schedule of
events for the day with watching a video of the day’s occurrences! So exploiting laziness
can profoundly change how you approach a problem. One example is the parser combina-
tors mentioned earlier, which return a list of all the possible parses; laziness guarantees
that this list is computed as it is needed. In particular, if you are happy with the first parse,
none of the others are ever generated.

* Graham, Paul. Hackers ¢ Painters (O'Reilly, 2004).

Download at Boykma.Com HASKELL

Spreading (Functional) Education

What have you learned teaching programming to college students?

Paul: For many years, and perhaps even so today, functional languages were found
mainly in introductory classes, because they are easy to learn and abstract away from the
many details of imperative computation. I now think that, in the long run, this may have
been a mistake! The reason is that students quickly conclude that FLs are toy languages,
since, after all, they were used in their intro classes, mostly on toy examples. And once
they discover the “power” of side effects, many of them never turn back. What a shame!

It seems to me that the best things about FP aren’t often appreciated by beginners. It’s only
after you’ve programmed for awhile that the benefits become apparent.

At Yale, we have a course on functional programming, and it is taken mostly by advanced
majors. I don’t have any problem throwing hard and large problems at them, as well as
advanced mathematics, to show them the real power of FP. And more importantly, I can
say, “Put that in your imperative pipe and smoke it,” and often we do—compare the
Haskell code against C code—and it’s quite enlightening, and is something that you just
can’t do with students for whom Haskell is their first language.

What'’s wrong with computer science and how we teach it? How would you fix it?

Paul: T wanted to write about a personal educational objective of mine that I hope others
will find interesting, perhaps even challenging.

There are literally hundreds of books that teach how to program, or how to write pro-
grams in a particular language. These books typically use examples drawn from a variety
of sources, but the examples are often pretty lame, ranging from Fibonacci and factorial, to
string and text processing, to simple puzzles and games. What I'm wondering is whether
it’s possible to write a book whose main topic is something other than programming, but
which uses a programming language as the primary vehicle to teach the main concepts.

I suppose that you could say that a book on operating systems, networking, graphics, or
compilers is such a book, if it uses a language extensively to explain the material, but I'm
interested in topics further removed from core computer science. So I'm thinking about
things like certain sciences—physics, chemistry, astronomy—or even social sciences, eco-
nomics in particular. And I wonder whether it’s possible to go one step further and teach
aspects of various disciplines in the arts—music in particular.

I would think that a functional language, especially a language such as Haskell that offers
such great support for domain-specific embedded languages, would be an excellent vehi-
cle to teach concepts other than programming. The great thing about programming is that
it forces you to be precise, and the great thing about functional programming is that you
can be concisely precise. The pedagogy for many of the disciplines I mentioned could ben-
efit from both.

1% CHAPTER EIGHT Download at Boykma.Com

Simon: This touches on something in which I'm quite involved in the U.K., particularly at
school. I'm a governor at the school; each school has a board of governors. The way that
computing is taught at school at the moment is dismal. There’s essentially no computer
science. It’s all essentially information technology.

When I say information technology, I mean spreadsheet and databases upward. It’s like
saying, “Here’s a car, and here’s how to drive it.” That’s how to use a spreadsheet. “And
now that you can drive it, we're going to discuss with you where you might want to go
with it. Do you want to go to Birmingham? If you want to go to Birmingham, here’s how
I think you might plan your route and who you might take with you.”

You get into project planning and requirements analysis and systems integration and that
kind of stuff. At the moment, at school, you do not learn what’s under the bonnet of the
car. To a certain extent, that’s defensible because that means that in some sense, every-
body should learn to drive a car, right? Furthermore, you should have some clue about
where you might want to go with it and how to avoid mowing down pedestrians.

Not everybody should be interested in how cars work. It’s perfectly fair that most people
just drive them, but some people should be interested in how cars work. There is a disci-
pline to computer science or computing that should be taught at school, at least to kids
who are interested in it. At the moment what happens is they get told, “This is what com-
puters are about,” but they're essentially turned off by it because it’s so boring.

I'm involved in a U.K.-based working group that is trying to support teachers to teach com-
puting or computer science at a school level. Certainly at secondary school, which in Britain
is ages 11 to 16. At A level, there is a computing A level where there is some real computer
science. That’s the 16 to 18 range, but by then, they’ve already been turned off.

Numbers are falling for computer science study in secondary schools, and they’re falling
even more shortly for university entrants, just as they are in the United States. That'’s
partly because every child has a computer these days, so they already know a lot of this IT
stuff. When they’re taught it and taught it repeatedly in different contexts at schools, they
think, “This is just dull. Why should I be interested in this?”

I think that’s primarily what’s wrong with the way computing is taught at school. For
many people who are not really going to be interested in the technology, it’s fair enough
to teach them how to drive. That should be modest and it should be integrated with other
subjects. It’s a useful tool, and there you go. It’s no big deal. But for some kids, we teach
them about physics, which of course is ultimately going to be interesting only to a minor-
ity. Most of them are not going to go around knowing about coefficient of expansions or
care about it. In the same way, I think there’s a discipline of computing I'd like them to
have some notion about, and be fired up by, because it’s so exciting.

Download at Boykma.Com HASKELL

Formalism and Evolution

What value do you see in defining formal semantics for a language?

Simon: Formal semantics underwrite everything that we’ve done with Haskell. If you
look at my publications, for example, you'll see that most papers will contain some for-
malism that tries to explain what’s going on. Even for something as imperative as transac-
tional memory, that paper had a formal semantics for what transactions meant.

Formal semantics is a fantastic way to get a handle on an idea, to try to nail down some of
the details and flush some of the tricky corners out into the open. But in a real language,
when everything plays together, to actually formalize everything for the whole of your
language is quite burdensome. I take my hat off to the Definition of Standard ML because
I think it’s a tour de force. It’s pretty much the only language that has a rather complete
formal description.

I suppose the extent to which I'd question it is to ask what the benefit is. There’s a high
cost to the last 10% of turning the language from a collection of formal fragments describ-
ing aspects of the language into a complete formal description as a whole language. That’s
a lot of work. It might be 70% of the work. How much benefit do you get from that final
70% of the work? Maybe only 20%or something. I don’t know quite how it plays out. It
seems to me that the cost/benefit ratio increases quite sharply as you go toward formaliz-
ing the whole language rather than pieces of it. That’s true even the first time.

Then you're trying to say, “But what if the language evolves?” We keep changing Haskell.
If I have to formalize every aspect of that change, that is quite a big brake on the changes
in the language, and that’s actually happened to ML. It’s quite hard to change ML, pre-
cisely because it has a formal description.

Formalism can be a brake on innovation, perhaps. It’s a spur to innovation because it
helps you to understand what the innovation is, but it’s a brake on innovation if there’s
somehow a sort of an environment dictating that everything has to be formalized com-
pletely across the whole language.

Is there a middle ground, perhaps a semiformalism where you wear jeans with a sports coat?

Simon: I think that’s the ground that Haskell occupies. The language definition is pretty
much entirely in English, but if you look in the accompanying research papers, you find
lots of formalism for fragments of the language. So it’s not codified in the report, certainly
not as a full description. For a language that does not have a formal description, you’ll find
much more material that is formalized than for C++, which is exclusively informal,
although enormous efforts have been lavished on that informal description.

It’s a funny balance. I really, really think that formalism has made a huge difference to
keeping Haskell clean. We haven't just lobbed things in without regard. Everything has
had to sort of fit in, in a principled way. It gives you a fantastic way to say, “This just looks
messy. Are you sure it has to be like that?” If it looks messy, chances are, it’s going to be
hard to implement and hard for the programmer to figure out what you’ve implemented.

196 CHAPTER EIGHT Download at Boykma.Com

Philip: The initial paper on type classes was by myself and Stephen Blott, and appeared in
the proceedings of the Symposium on Principles of Programming Languages in 1989.* It

formalized the core of type classes, and we tried to keep it as simple and small as possible.
Later, Cordy Hall, Kevin Hammond, Simon, and myself tried to write down a much more
complete model.t That appeared in ESOP in 1994, so you can see that it took five years to
get around to it! We didn’t formalize all of Haskell, but we tried to formalize all the details
of type classes. So there are different levels of modeling appropriate for different purposes.

The ESOP paper served as a direct model for implementation in GHC, notably the use of
higher-order lambda calculus as an intermediate language, which is now central to GHC.
That’s one nice thing about formalization. It is a lot of work to do the formalization, but
once you've done it, it provides a great guide to implementation. It’s often the case that
something seems hard to implement, but once you’ve put in the effort to formalize it, the
implementation becomes a lot simpler.

Another example of formalization is Featherweight Java, which I developed with Atsushi
Igarashi and Benjamin Pierce, published in OOPSLA in 1999 (and republished in TOPLAS
in 2001).* At this time, lots of people were publishing formal models of Java and they
were trying to make them as complete as possible. Our goal with Featherweight Java was
instead to make it as simple as possible—we tried to get everything down to a tiny syntax
with just one page of rules. And that turned out to be a good idea, because the model was
so simple it was a good basis for people to use when they wanted to add one new feature
and model that. So the paper has generated a huge number of citations.

On the other hand, it turned out there was a bug in the initial design of generics having to
do with assignment and arrays, and we didn’t catch that, because we didn’t include either
assignment or arrays in Featherweight Java. So there’s a tradeoff between a simple model
that gives you insight, and a more complete model that can help you catch more errors.
Both are important!

I was also involved in formalizing part of the definition of XQuery, which is a query language
for XML, a W3C standard.S Of course, you get a lot of arguments on standardization commit-
tees; in our case lots of folk said, “What is all this formalization stuff? How am I supposed to
read that?” They didn’t want to make the formalization the canonical standard; they wanted
to make English prose canonical because they thought it was easier for their developers to
read. But parts of the type system were easy to write in the formalization and very hard to
write out in English, so they decided that for those parts the formal spec would be canonical.

* Wadler, Philip and Stephen Blott. “How to make ad-hoc polymorphism less ad hoc,“16th Sympo-
sium on Principles of Programming Languages, Austin, Texas: ACM Press (January 1989).

+ Hall, Cordelia et al. “Type classes in Haskell,” European Symposium On Programming, LNCS 788,
Springer Verlag: 241-256 (April 1994).

T Igarashi, Atsushi et al. “Featherweight Java: A minimal core calculus for Java and GJ,” TOPLAS,
23(3):396-450 (May 2001).

§ Simeon, Jerome and Philip Wadler. “The Essence of XML,” Preliminary version: POPL 2003, New
Orleans (January 2003).

Download at Boykma.Com

HASKELL

197

At one point, someone suggested a change to the design. And an interesting thing was
that despite these complaints, the committee asked the group of us who were working on
formalization to formalize this change. So we did this, and discovered that even though
the proposal for the change written in English was supposed to be precise, there were 10
places where we didn’t know how to formalize it because the prose could be interpreted in
more than one way. So we resolved these questions and then presented a formal spec.
After we presented the formalism at the next meeting, the change was accepted unani-
mously—there was no argument at all—which is something that never happens at stan-
dardization meetings. So in this case, the use of formalism was really a big success.

As Simon said about Haskell, it’s usually more effort than it’s worth to formalize abso-
lutely everything. So with XQuery, we formalized about 80% of it, but there was another
20% that was important but would be a huge amount of work to formalize, so we didn’t
do it.

That said, I think we got a lot of value out of what we did formalize.

Apart from this story, that formalization became the core of Galax, implemented by my
colleagues Mary Fernandez and Jerome Simeon, which is now one of key implementa-
tions of XQuery. So, again, this is an example of how formalization can make implemen-
tation easier.

All the mathematicians | know say if math’s not beautiful, it'’s probably wrong.

Simon: Right. To take an example, we’'re busy adding type-level functions to Haskell at
the moment, and we're really trying to figure out the formalism for that. We’ve got an
ICFP paper this year about it, but still I'm not completely satisfied with it. So we’'re beating
away on this. This has direct consequences for the implementation. We could just throw
together an implementation. Say, “It is what it is; try it out.” Then we’d have a good
chance that people would come back the next day and say, “Well, here’s a program that I
thought would type check but doesn’t, so should it?” Then we have to say, “Well, you
know, the implementation doesn’t type check it, so maybe not. But you have a right to ask.”

I'm not unhappy with the fact that we never formalized the entire language as a whole.
But that’s is not to say that there’s no benefit from doing it, right? The last 70% of the
effort does produce some benefit. Maybe the cost/benefit ratio isn’t as good, but there are
benefits. Maybe there are interactions between language features that you hadn’t under-
stood. You formalized aspects, but you didn’t know that if you had a cunning plan A and
tricky feature B that they’d mutually destroy each other. We're all a bit vulnerable to that.

If you have a large language community in some aspect, people will run into that
eventually and file bugs.

Simon: Right, and then you may embarrassingly say, “Well, ah, yes,” and “If only we’d
gone further with formalizing a larger sort of subset to the language, we’d have been in bet-
ter shape.” It’s terribly important. But after a bit, we consciously didn’t do what ML did.

198 CHAPTER EIGHT Download at Boykma.Com

When this happens, do you have a technique for handling backward compatibility
concerns?

Simon: I guess we're still evolving one, but in the past, we've more or less ignored it.
That’s less true today. About 10 years ago we established this language we called Haskell
98 as a kind of stable subset language. It was a language we were certain we weren’t going
to change. Haskell compilers by default accept Haskell 98. If you want anything other than

Haskell 98, you have to give them some flags that say: accept this after the other extension.

One flag used to say: switch everything on, and nowadays it has been broken down into
about 30 separate extensions. The old single flag just expands into some 15 of those. If you
look at a source module, you can usually see which language extensions it’s actually
using. In effect, we’ve become more careful about inviting programmers to identify which
language they’re using.

The constraint tends to be that you should not break old programs, although this not
exclusively the case. Some of these extensions switch on the extra keywords like forall. In
Haskell 98, you could have forall as a type variable in a type—but when you switch on
the high-ranked types, forall becomes a keyword, and you can’t have a type variable
named forall.

People very seldom do that anyway. For the most part, the extensions are upward com-
patible. But, as I say, there will definitely be Haskell 98 programs that break when you
switch on enough extensions.

Is there a point in the future where a Haskell 2009 or 2010 codifies all of these into a new
standard?

Simon: Yes. There’s a well-advanced process of this called Haskell Prime, where the
“Prime” is the tick to a variable name, mainly meaning we haven’t yet decided what to call
it. What we originally envisioned was a group of people debating in public and emerging
with a new language, sort of standard that we could plant in the ground and say, “That’s
Haskell 2010,” rather as we did with Haskell 98. In fact, it’s difficult to get enough people
to devote enough effort to make that happen.

I suppose that’s because it’s a bit of a kind of success disaster. GHC, by virtue of being the
most widely used Haskell compiler, has become a bit of a de facto standard. That means
that in practice, people don’t come across too much difficulty because of language incom-
patibilities between different compilers. I don’t think that’s ultimately healthy for the lan-
guage, but it reduces the impetus for people to devote their most precious commodity—
their time—to codify the language standard.

Will there ever be competing implementations that follow GHC's language standard
closely?

Simon: There already are competing implementations that tend to be a bit more special-
ized toward particular areas. In fact, just recently at ICFP, the functional programming
conference a couple of weeks ago, we shifted gears. Rather than trying to produce a single

Download at Boykma.Com

HASKELL

200

CHAPTER EIGHT

monolith, which is Haskell Prime, we're instead going to try to codify language extensions.
Rather than have them defined by GHC, we're going to invite people to suggest what lan-
guage extensions they think should be codified, debate them a bit, and then get a person
or a small group of people to write up essentially a kind of addendum to the report that

”

says: “Here is a standalone description of what this language extension is supposed to do.

Then we’ll be able to say that Haskell 2010 is this set of mutually coherent extensions. We
can proceed, as it were, first of all by codifying and naming extensions, and then by group-
ing them into a named group, rather like Glasgow extensions, but a bit more coherently.

We're hoping, as far as the language design is concerned, that it’s a bit more like what the
open source community does when they're releasing a new version of GNOME or Linux
or something. There’s lots of stuff going on in the background, but eventually somebody
wraps a bit of sticky tape around it and says, “All the pieces work together and this partic-
ular collection of pieces is called GNOME 2.9.”

A loose collection of progress joined at a common philosophy with a nice bow on it.

Simon: Right, and a promise that they’re mutually compatible. That’s what we're doing
on the language side. The language is almost defined by an implementation, so there’s
quite a lot of order to that process already. If anything, the reason the impetus is lacking is
because it’s too ordered.

On the library side, it’s the complete reverse. There are lots of people developing libraries.
Do you know about Hackage? There’s about a new library in there every day. We're up to
700-something at the moment. What that means is that it’s quite difficult to say, “Does
this library actually work at all? Is it compatible with that one?” That’s quite a serious
question if you're just Joe User trying to use Haskell.

At the moment, the goal for me, as a compiler writer, is to get out of the business of library
design and maintenance. Instead, a different bunch of people are going to do the same
process that we just described but for libraries. They’re going to call it the Haskell Platform.
It’ll essentially be a bunch of libraries that are codified. Again, this is quite conventional, I
think. The Haskell Platform will essentially be a meta library that depends on particular
versions of dozens of other libraries. It will say, “If you get the Haskell Platform, you get a
bunch of libraries, all of which have a kind of kite mark of quality control, and all of which
are somehow mutually compatible.”

One way in which they can be incompatible is that two libraries might depend on different
versions of the same common base library. If you glom them together, you’d have two
copies of the base library, and you probably don’t want that. If the base library defines a
type, the two different copies of the library might create different versions of the type that
are mutually incompatible. Things that you might expect to work wouldn’t. They
wouldn’t just fail one type, but give a perplexing type error; it would say that T from Mod-
ule M in Package P1 version 8 doesn’t match T from Module M in Package P1 version 9.

Download at Boykma.Com

I guess this is a long way of answering your question about backward compatibility. We're
beginning to take it much more seriously. We still have the problem, when releasing a new
version of GHC, that the compiler is rather tightly coupled to a base package of libraries.

Everybody depends on the Prelude as well.

Simon: Yes, but that’s because the Prelude is very useful. It defines a lot of useful func-
tions. When I say “tightly coupled,” I mean the compiler knows the exact implementation
of map and knows its name and where it’s defined. There are some libraries that GHC is
deeply in bed with.

Is that in order to cheat in the compiling stages?

Simon: Yeah. Somehow, if the compiler’s going to emit code that calls library functions, it
has to know that those functions exist and what their types are. That knowledge ends up
being baked into the compiler. That’s one way of thinking about it.

What that means is that if we change the interface to the base package, as is likely to be
the case from version to version, in future releases we’re going to include a kind of shim
around the new base package that provides the same API as the old base package so that
you can be insulated from the changes if you want. All of this is sweaty backward compat-
ibility stuff that we didn’t have to do before. But it’s the problem of not obeying the motto,
“Avoid success at all costs.”

Popularity has its own set of problems.

Simon: That's right, but they’re nice problems to have in a way.

What do the lessons about the invention, further development, and adoption of your
language say to people developing computer systems today and in the foreseeable
future?

Simon: Functional programming is a laboratory where lots and lots of interesting ideas
are explored. Because the basic setting is simpler, we can go a lot further in exploring
promising ideas (examples: type systems, generic programming, reactive programming,
continuations). So if you walk into the FP laboratory, you’ll find lots of interesting stuff
lying around. It may or may not be directly useful to you, but the future is happening right
now in this lab.

Paul: The most interesting lesson I learned is that sticking to an ideal—purity, in the case
of designing Haskell—can have big payoffs. It might take a while to find the right solution,
and it might take even longer to see the payoff, but it will come. Shortsightedness may
yield a quicker payoff, but if you compromise your principles in the process, you will lose
out in the end.

Download at Boykma.Com HASKELL

201

Download at Boykma.Com

CHAPTER NINE

ML

ML is a general-purpose functional language developed by Robin Milner and the
team he led at the University of Edinburgh in the 1970s. It grew from a metalan-
guagde project designed to describe mathematical proofs. ML’s most valuable con-
tribution to language design may be the Hindley-Milner type inference algorithm
used in many static, latent type systems. The language inspired Standard ML, Caml,
Haskell, and F#, among others.

Download at Boykma.Com

The Soundness of Theorems

You created LCF, one of the first tools for automated theorem proving, and the
programming language ML to run the proving. How did it work?

Robin Milner: There were other efforts at machine-assisted proof around in 1970. They
were at two extremes: either fully inventive (e.g., using Robinson’s famous resolution
principle) in searching for a proof, or fully noninventive in the sense that they would only
check that each small step performed by a human was logically valid (as in de Bruijn’s
Automath system). Both these approaches, by the way, contribute a lot to today’s proof
technology.

Ilooked for something in between, where a human would design a tactic (or a strategy
built from little tactics) and submit it to the machine together with the thing to be proved.
There would be interaction; if one tactic failed or partly failed then the machine would say
so, and the human could suggest another. The key thing was that, although the tactics
could be adventurous, the machine would only claim success if a real proof was found. In
fact, in a successtul case the machine could proudly export the proof that was found so
that another independently written program (of the fully noninventive kind) could check
it.

The key to why it works was that ML, the metalanguage in which clever users would
write the tactics they thought of, had a type system (somewhat but not completely novel)
which made the language resolutely refuse to claim success unless it (thanks to the clever
user’s tactics) could fill in every detail of the proof which the tactic merely sketched. So
ML was the vehicle for a cooperation between hopeful human and meticulous machine.

What are the limits of LCF?

Robin: I don't see obvious limits. Nowadays systems people express quite adventurous
tactics to systems like HOL and COQ and Isabelle, and the problems solved are slowly get-
ting harder. HOL actually achieved a proof that the type system of ML was sound, which is
like confirming that your parents” reproductive system was OK. But we're a long way
from being able to capture the mathematicians inspired thoughts as a tactic. I suspect that
bigger advances will come mainly from building a tower of simpler theorems from which
more complex ones can be deduced, which is how most mathematical theories are built
anyway.

As for proving that programs work, this is already quite possible when the user is able to
annotate his program-to-be-proved with assertions (as pioneered by Floyd and Hoare
right back in the early 70s), which say things like “every time this point is reached in exe-
cution these relationships will hold between the program variables.”

20% CHAPTER NINE Download at Boykma.Com

Can this approach analyze the source code of a program to prove that it contains no
bugs?

Robin: Yes! It’s done a lot, especially for small critical programs that are embodied in real
products like the brakes of a car. The biggest problems come when people can’t (or refuse
to) formulate the desired property in a rigorous form!

How much effort is needed to define these properties in a rigorous form?

Robin: This is really a question for those who deal with logics in which the properties can
be expressed. The role of ML is not to be such a logic, but to be a medium in which proofs
in these logics can be expressed, as well as heuristic algorithms for finding those proofs. So
ML is a host to such logics. The original logic for which ML was a host was LCF, a logic of
computable functions due to Dana Scott. In this logic we used ML (and its predecessor) to
find and/or check some theorems; I'm glad to say that one of these theorems was the
(almost completed) proof of correctness of a compiler from a very simple source language
to a very simple target language.

Is this portable to other programming languages?

Robin: Having explained ML’s role (as a host to logics) I suppose the closest question to
this one that I can answer is this: can other languages be equally good hosts to logics for
proof? I'm sure they can, if they have a rich and flexible type system and handle both
higher-order functions and imperative features. ML was fortunate to be the host chosen
by some successful logic developers, and this means that people continue to choose it.

Why are higher-order functions necessary for a language to be a good host for what you
call logics of proof?

Robin: You implement inference rules as functions from theorems to theorems. So that’s
the first-order type. Your theorems are essentially sentences, so an inference rule is essen-
tially a function from strings to strings. We invented these things called tactics—you
express a goal, your sentence, that you’d like to prove, and what you get back is a set of
subgoals together with a function that will, given the proof of those subgoals, produce a
proof of the goal. So a tactic is a second-order function.

We had some of these tactics. We programmed them, and then we wanted things that
would stick them together to get bigger tactics. We then had third-order functions, which
we called tacticals, which would take tactics and produce bigger tactics. Such a tactic might
say, “Well, first of all, get rid of all the implications and put them into the assumption list
and then apply the induction rule, then apply simplification rules.” That was quite a com-
plex tactic, which we called a strategy, and that would demolish several theorems.

Download at Boykma.Com

When I was working for John McCarthy in Stanford, I said, “Look, I've done something
nice, I've got this strategy, this tactic, and here’s a property of strings that it proves. I just
express this goal, which is a fact about strings, and then I apply my tactic and it produces
that assertion as a theorem.” He then said to me, “How general is your tactic? What else
will it apply to? I've got an idea.” He said, “What about this particular thing that I'd like to
prove?” He came up with another example. Secretly I had already proved that second
example with the same tactic, but I didn’t tell him, so we applied the tactic to it and, sure
enough, it worked, to which he simply didn’t say anything because that was the way he
agreed with things. I was able to show that we had a polymorphic tactic; they could do
more than one thing.

You also developed a theoretical framework for analyzing concurrent systems, the
Calculus of Communicating Systems (CCS), and its successor, the pi calculus. Can this help
to study and improve the way we handle concurrency in modern hardware and software?

Robin: I began to think about communicating systems when I was in McCarthy’s Al lab at
Stanford, 1971-1972. It struck me that there was hardly anything in existing languages
that dealt with them nicely. Mainly I was looking for a mathematical theory, that lan-
guages could use as their semantics—this implies the need for something modular; you
should be able to assemble a (concurrent) communicating system from smaller ones.

At that time there was already a beautiful model by Carl Adam Petri—Petri nets—that
treated causality very well; there was also the Actor model of Carl Hewitt. Petri nets were
not modular, and I wanted to get closer to a kind of concurrent theory of automata than
in Hewitt’s model; also to take the notion of synchronized communication (handshake) as
primitive. Also automata theory, with its semantics as formal languages (sets of strings of
symbols), did not treat nondeterminism and interaction well. So CCS was my attempt.

My main excitement was to get an algebraic treatment—first for the statics, and then for
the dynamics. Many years were spent doing this better, including a major step prompted
by David Park, to introduce the notion of bisimilarity based upon maximal fixed points. At
the very beginning, I wanted to model systems that reconfigure their state; for example, A
and B may not be able to communicate until C, who is in touch with both, sends A the
address of B. At first, in discussion with Mogens Nielsen, we failed (mathematically); then
Mogens put right something that we had not thought out properly; this led to the pi calcu-
lus, developed with Joachim Parrow and David Walker.

The excitement here was that pi not only dealt with reconfiguration but also was capa-
ble—without any addition—of representing data types. So it looks like a basic calculus for
mobile concurrent systems, much as the lambda calculus is for sequential systems.

Pi seems to be used a lot, and is even useful for biological systems. But more importantly a
whole new range of calculi are coming forward that model distributed systems more

directly, handling such things as mobility and stochastic behaviour. Instead of polishing off
the theory of concurrent processes, we seem to have opened a very useful can of worms.

206 CHAPTER NINE Download at Boykma.Com

Is it possible to understand a system scientifically before you design and build it?

Robin: I've been thinking a lot about this in relation to ubiquitous computing lately, but I
think it’s general. You have to have some kind of model of how the system is going to

work. At the very simplest level you have the von Neumann machine, which is a scientific
or formal or rigorous model that actually gave rise to FORTRAN and a whole sequence of
sequential languages. That’s a scientific model. It’s a very simple one; that was its beauty.

You need a model from which the programming language is, as it were, extracted or
defined. For ubiquitous systems, this model may be very far from the von Neumann
machine; it has to be something that deals in general populations of agents all interacting
and moving about, and sensors and so on.

It sounds like you're talking about a series of metalanguages that express semantics.

Robin: I'm not keen to use the word “language” until we have a model. Of course, that
completely goes contrary to what happens all the time; languages get defined and they do
get defined in metalanguages, and very often that’s before there’s a good model, unless of
course the metalanguage actually provides that model. Maybe metalanguage is a synonym
for model in this case. We used it when we defined Standard ML. We used the metalan-
guage, which was a kind of inductive inference of what would be admissible instructions
and what they would do. I suppose that’s what a generic model is. I agree with you; I'm
talking about a series or a kind of unknown family of metalanguages. Each of those gets
specialized to a particular system, which we could call a program.

In this sense, is computing the definition and formalization of models at several different
layers that allow you to build models at higher layers?

Robin: Yes. This is very much my concern with ubiquitous computing because there are
so many concepts you want to be reflected by the behavior of a particular system, but you
may not be able to include all those concepts directly in one model. I've been talking
about a tower of models where at the bottom you might have a rather elementary
machine. As you go up, you get into more interesting or more humanoid or more subtle
concepts, like failure management and self-awareness and trust and security and so on.
Somehow one wants to build models in a layered way so that in each model you talk
about a fairly manageable set of concepts, and then you implement them in a lower-level
model.

Lisp and Forth often talk about extracting and building systems out of reusable concepts
of meaning. In a sense, you develop a rich language to solve your problem.

Robin: As I think of a stack of models, at the lower levels you have things that would be
called programs. At the higher levels, you have specifications or descriptions of what can
and can’t, or should and shouldn’t happen. They might be in all sorts of forms, in a logical
form, even in natural language. When you get to the lower levels, you get familiar things
called programs, and they can be just regarded as particular models.

Download at Boykma.Com

207

Are they a sop to the idea that our computing models are inherently procedural?

Robin: Yes. When you get to the more dynamically explicit models, then they’re proce-
dural, I suppose. You can have a model of specifications. It may consist of logical predi-
cates; that’s a model, it’s not a very dynamic model, but then you can use pairs of
predicate formulae to represent pre- and postconditions and you can assess the soundness
of an implementation by whether you can verity it logically. You move from a specifica-
tion or model that isn’t obviously dynamic to one which is dynamic further down. That’s
interesting, I don’t think I quite understand the shift from dynamic lower down to
descriptive higher up, but it does seem to happen.

Alternatively, as in the method known as abstract interpretation, you still have a dynamic
model at a higher level but working with some abstraction of the data. It isn’t really the
program but it is dynamic. That’s what the French people have used in verifying the Euro-
pean Airbus embedded software. It is an interesting and involved question as to when a
model is dynamic and when it’s just descriptive.

Perhaps that shift occurs when we have to acknowledge the laws of physics—the
behavior of NAND gates, for example. We understand these physical processes, but
there’s a point at which the models we build subsume that level.

Robin: Yes. There’s the circuit diagrams for a computer and they’re talking about elec-
tronics, and then up above them you have the assembly code and you’re no longer talking
about electronics. But as you're moving upward you’re still retaining a dynamic element
in the program as if it were translated into the dynamic element in the circuit diagrams.
You seem to be able to move through, as it were, different dynamic notions while still
retaining the dynamicity, but it becomes of a very different nature as you go further up.

Often logical models have a dynamic element as well. For example, the so-called modal
logics are defined in terms of possible worlds, and moving from one world to another.
There you have a dynamic element but it’s slightly cloaked.

I can imagine people objecting that errors or elements of undecidability in lower levels
may affect the computability possibilities at upper levels.

Robin: That seems to be just a fact of life. You may not be able to damp down the unde-
cidability at a lower level, but at a higher level this is done in type checking. Types are an
abstract model, and there you may have decidability because it’s a weak abstraction and
you don’t have the ingredients that lead to undecidability. Of course they only talk about
some one aspect of a program, so you only gain decidability as you go up at the expense of
detail.

I hadn’t thought of it that way.

Robin: Nor had I terribly much. In terms of type checking, you do have type systems for
which it’s decidable whether the program is well typed and what type it has, and then you

208 CHAPTER NINE Download at Boykma.Com

do something quite minor to it and then it turns out to be undecidable. You just add a lit-
tle bit more detail to your type system. This happened to the type system which we used
in ML; the type system was basically decidable but if you add so-called conjunctive types it
gets to be undecidable.

There’s this sort of tension between what'’s useful to have and what is totally manageable.
A lot of the time even if you can’t always check something against an conjunctive type
system, you can have an awtful lot of success with a sufficiently intelligent theorem prover.

One can express all this with the notion of what I call a tower of models. As you go
upward you lose more information. You may gain some analytic capability, and it may be
valuable because you're analyzing a property of the programs that is going to be useful to
know about even if you're not getting the whole story.

I've heard that you can go the other way. An expression in the model at an upper level
means you can remove a whole lot of undecidability from lower levels when you can
prove that certain conditions never happen.

Robin: Oh, I see, yes. The lower level consists of a basically undecidable model, but under
certain constraints on the elements you're considering, it could attain decidability.

Is undecidability not as universally bad as it sounds?

Robin: No, but it’s an interesting topic to bring up in order to see what models do for you
and how they affect the undecidability. I think it’s a good topic.

How should we as informaticians, computer scientists, or working programmers teach
concepts of theorems and provability and typefulness to people who just want to get stuff
done?

Robin: It’s probably fatal to do it too early in the degree programme. That’s something
we're up against, and it happens in maths as well. You do things that you're later going to
do in a more abstract way, but you do them in a more concrete way early on and then
people can vaguely understand them. You do Euclidean geometry and you shut up about
all the other geometries there are. Later on, maybe in the second year at university, you
can begin to understand what another geometry might be like, whereas that level of
abstraction just isn’t available to a 17-year-old, mostly. It would be unwise to work under
any assumptions that enough of them would have it to justify teaching it.

I know I'm making mistakes also in the degree programme by trying to teach things to the
final year of an undergraduate programme that are still too abstract. A lot of the computa-
tion theory is too abstract even at that level. That’s something we just have to live with.
The trouble is that to get proper understanding of the subject without these abstractions,
you have to have a kind of hierarchy of understanding. Some people will never want to
talk about the abstractions. Other people will love them, and all you’ve got to do is make
sure they can talk together about something.

Download at Boykma.Com

Does this limit the applicability to practical programmers? Can we expect that up to 20% of
them will be interested in theory?

Robin: It’s reasonable that they shouldn’t have to understand the theory. Language is a
tool, and there are all kinds of tools. Model checking is a tool that people used to avoid
having to understand too many details. That’s fine, provided there are some people who
do understand and who know that the model-checking tool is sound. Essentially we seem
to have a lot of tools in our discipline that are there just to relieve people of certain kinds
of understanding because they’ve got better things to do. They’ve got bigger and more
urgent things to do, and that’s exactly where a high-level programming language comes
in. What I really like about some theories is that you can extract a programming language
from them.

I'm working with a graphical model for ubiquitous computing. It’s a descriptive mecha-
nism, which is possibly difficult for many people to understand, but you can extract a lan-
guage from it, which will be, I think, quite easy to understand. When you extract the
language, you're using kinds of metaphors—sometimes they’re special metaphors, some-
times they're structural limitations, and so on—so that the step from the abstract model
into the programming language is a comfort-providing step which gives people some pro-
tection from things they don’t want to have to bother with. Type systems, for example, give
you protection from some things you would rather not know for most cases. Isn’t that the
nature of our subject: that we go up this tower of models, we get more and more abstract,
and each person is prepared to go up—or down—a certain distance and no further?

As you go up the tower of models, you don’t necessarily get more abstract, but you may
get more restrictive. One beautiful example is the model of message sequence charts,
which described finite fragments of concurrent behavior of message-passing and what can
happen and what can’t happen. That seems to me like a restrictive model, which is readily
translatable into a more complex model, which deals with recursion cycles and all sorts of
horrible things that you don’t want to think about like race conditions. The beauty of the
message sequence charts model is that your executives can understand it, so as you go up
the model tower, not only do you abstract to make it easier to understand theoretically, but
you may also restrict somehow to make the model more accessible to less-specialized people.

In some ways it’s more general, but in some ways it's more specific.

Robin: Yes, exactly. That's a puzzle, I think. You might want to put the more specific
thing lower rather than higher, but I've been putting it higher. The main thing is it’s dif-
ferent and it serves the purpose of making things more accessible to some people at the
price of generality. It seems to be a worthwhile thing to do.

If a model is a collection of theorems built up from more fundamental principles, how
does it affect the ideas you can express using that particular model?

Robin: I've got an example. I hope it’s not too far-fetched, but it happens in the model
I'm working with. You have a model of mobile systems, systems where messages move

210 CHAPTER NINE Download at Boykma.Com

about and sensors and actuators move about, the sort of thing that happens in ubiquitous
computing. You can set up the model so that you can say a lot about it. You can express
the invariants so that there never comes a state when you’ve got more than 15 people in
the same room or something of that kind. But in one version of the model you can’t track
a particular individual and say, “This person was never in this room.”

It seems like a screwy example, but it’s quite simple, really: there’s nothing in that model
that tracks the identity of an individual through various events and reconfigurations. You
cannot even formulate the question, “Was this person ever in this room?” because you
don’t know how to say “this” person—"this” implies identity persisting through time,
especially if it’s connected with verbs in certain tenses.

That’s a case of a model in which there are some things that you can’t even express, and
I'm very much intrigued with this because that seems to be an advantage for some pur-
poses. It’s a great advantage in applying this model to biological systems, where you're
talking about populations of millions of molecules, and you’'re not concerned about which
molecule is which; you're just concerned that you can say something about how many
molecules there will be in 15 minutes or something like that. The model can be very use-
ful for biology without having to express the identity of particular molecules.

Identity is not as important as the stochastic description?

Robin: That’s right, in this particular case, where it might not be for many purposes. Of
course, I've been making an analogy between biological and ubiquitous systems in which
people or agents of some kind moving around in a city or in some controlled environ-
ment. In this latter case, you're very much more likely to want to talk about the identity of
a particular individual. He was never in this pub where the crime was committed. You
might want to say that, and so you’ve got to know about what “he” means through time.

In models, again for ubiquitous computing, you might be talking about space in an
entirely discrete manner, so you don’t say anything about distance. You only talk about
some entities being adjacent to each other or being nested inside each other. You may not
wish to model the continuity of space, so you forget all about that. It does seem that there
are lots of features that models may cheerfully do without for certain purposes and then
need to refine themselves for other purposes.

Suppose | write an API. The better my design choices, the more expressive and easier to
understand the model. As well, | may be able to make the system much easier to use
correctly than to misuse.

Robin: This probably happens with whatever family of systems you're considering. You
might be talking about security systems, and in a particular model you might be unable to
express some aspects of security, but able to argue about other aspects. Or the model may
express security properties but not be able to say anything about privacy. Properties like
authenticity, privacy, security, and safety are all subtly different. Most models can only
express some of them.

Download at Boykma.Com

211

To borrow the biological metaphor again, | don’t have to understand the process of ATP
conversion in my cells to understand how to pick up and pet my cat, but those cells don't
know anything about the cat. As far as they’re concerned, it’s a bunch of other cells.

Robin: We’re not too different from natural science in this way. You can do Newtonian
mechanics about moving bodies, but you can ignore friction.

Are we in for a renaissance of provability?

Robin: I think it'll continue, as long as people go on designing languages with an explicit
semantics. That semantics won’t be of any use at all unless there are some theorems that
you can prove about it, like “No program will ever do anything stupid of this kind,” or
possibly more positive things like “Programs will always take a polynomial amount of
memory.”

That might be an impetus for people that design new languages to make those kinds of
proofs.

Robin: I wish they would. Generally languages get designed without that in mind partic-
ularly. That’s something I would like to change, but that’s the way the languages get
designed and usually by a mixed committee of people. Some of the designs are excellent,
but they don’t generally have proof in mind. You get faults like the fault in Pascal about
variant records where the type discipline is violated. Nontheorems like that about lan-
guages are quite common.

I think we’re probably making progress, because we do see these proofs about languages
happening, and happening without a huge amount of effort because of the efficiency of
proof systems, so this will allow feedback from provers to designers. That would be nice.

The Theory of Meaning

What is the link between the design of a language and the design of software written with
that language?

Robin: This is an enormous question. Long ago, I think in the 60s and 70s, there was
hope for a single UNiversal Computer Oriented Language (UNCOL), which never came
into existence. The idea was that you would use UNCOL for everything. If it existed, there
couldn’t be a meaningful link between the design of a language and of programs!

Now (and before then) we have seen a progression of languages, almost all favouring cer-
tain applications. Prolog favoured applications where actions can be conveniently
described by logical formulae, so the design of a Prolog program would be structured on
logical terms. ML and Haskell have rich type structure, so the design of ML and Haskell
programs will often be closely linked to type structure. And so on. Every task can be writ-
ten in many different languages, and it may be that the structure in the programmer’s
mind is the same, but that each language will do better in rendering explicit some parts of
the structure, leaving other parts implicit; the parts that can be made explicit will ditfer
from language to language.

212 CHAPTER NINE Download at Boykma.Com

Faced with a particular task, I think a programmer often picks the language that makes
explicit the aspects of the task that he considers most important. However, some lan-
guages achieve more: they actually influence the way that the programmer thinks about
the task. Object-oriented languages have done very well from this viewpoint, because the
notion of object helps to clarify thought in a remarkable variety of applications.

Do paradigms besides OOP influence the way a programmer designs and thinks?

Robin: Yes, I think that logic programming and functional programming have had that
influence. I hope that the paradigms of process calculi also have an influence. They cer-
tainly did in Lotos—a specification language—and I think they did in Ada, via the notion
of ALT commands, among other things.

Instead of having to choose a language for each task, will each programmer use his own
programming language? Will we converge on a few language families?

Robin: It would be anarchy for each programmer to use his own language, if this lan-
guage were not constrained in its meaning by an accepted theory. After all, how would
the meaning of his language be defined, other than in terms of an accepted theory? Once
the theory exists, a programmer can invent syntactic phrases that are explained by the
theory. So he would be using “his own” syntax, but with meaning drawn from a theory,
and when he describes his language, he refers explicitly to that theory. Nothing wrong
with that. But, because the theory will be behind these languages, one expects them to
have a lot in common.

How do you define the idea of designing a programming language? Is it a tool to express
ideas or a tool to express goals?

Robin: If you consider the nice example of functional programming and also logic pro-
gramming, there was already a theory, for functional programming the theory of func-
tions, the theory of types, of values, and for logic programming the well-developed theory
of first-order logic. This theory was there before the language arose and the language was
more or less based on that theory, so there are examples of theories that came before the
languages, and I think we probably need more of those; I don’t know how many different
ones we need.

We might say that the goal that someone wants to achieve is fundamental to designing a
language.

Robin: It might be that you need to express the goal or you express the properties of the
behaviour of programs in a different language or using a different theoretical tool. For
example, you might want to write your specifications in some kinds of logic, and the pro-
gramming language would be more algebraic kind of language, but the two—the algebra
and the logic—would be already pleasingly linked before you even design parts of them as
a programming language.

I think the tool that you use for expressing goals and expressing desiderable properties
doesn’t have to be the same as the one that you used to express the program, but they

Download at Boykma.Com

213

ought to be linked in a theory of some kind which exists perhaps not just in order to pro-
duce programs, but exists even to understand natural phenomena like in the case of biol-
ogy I mentioned. It seems that if we can understand informatics we can understand
natural systems from an informatic point of view, and that is what a natural scientist does.
But perhaps we can also use the same formalisms, the same mathematical constructions
and properties to define languages and therefore bring in artifacts that are not natural
phenomena. So I don’t see why the informatic description of natural systems should be
separated from the informatic description of programming systems or software systems.

Suppose today you found a bug in the system youd done five years ago. You have a
specification synchronized with the implementation. What if there’s a bug in the
language design? What if a fault leads to a particular type of error?

Robin: I'm very glad to say that hasn’t happened, and I don’t know what we would do. I
think probably we would say you’ve got to live with it. We would publish something that
said, “OK, this goes wrong but if you do this, this, and this then you’ll never have to
worry.” These definitions are pretty sensitive. I mean some people are working on the idea
of making definitional mechanisms less sensitive and more modular, and I think that’s
really quite difficult. I don’t know how that’s done. I would be inclined now not to change
it but simply to tell people that it’s there, the problem. It’s just a practical move, so as not
to tear your hair out.

Given a language with a rich type system, such as ML or Haskell, what ideas does the type
system make explicit within the desig¢n of programs written in those languages?

Robin: If their system gets through the compiler—that is, the type checker—then certain
things cannot happen. They do know that there won’t be any of certain types of runtime
error. They won’t know that you won't get array overflow and they won’t know all kinds
of other nasty things that can happen like silly endless loops and so on, but they will know
quite a bit.

For the application we had, the proving of mathematical theorems, it was marvelous to be
able to say, “If you think you've proved a theorem in ML, and you think your representa-
tion of the inference rules of your logic in ML has been well done and the ML program
comes up with a proof of a theorem, then the theorem is certainly proved.” That’s because
of the abstract types mechanism, which allows you to express the type of theorems as
being something that is only manipulable by the inference rules. Whatever clever tricks
you might want to do to search for possible inferences, if one of your searches for a possi-
ble inference sequence succeeds, then you have actually to perform that inference and
you have to perform that inference at the type of theorem. You know that the only things
you can do there are valid inferences. You may never succeed within certain searches for
possible inference sequences, but if you do succeed then you perform those inferences, or
the system does it for you. Within the verification of the soundness of the implementation
and soundness of the language design, then you do know it’s a theorem. If you had a
typeless language, you wouldn't.

21% CHAPTER NINE Download at Boykma.Com

You just have a collection of operations.

Robin: The system would say, “I've got a theorem” and you’d say, “how am I to be sure of
that?” That’s really serious. I remember early days at Stanford when we designed the first
version of—not even ML, actually. We were working with automated inference system
and we believed that we automated it correctly and the only things that could be inferred
were inferable by the inference rules. I remember thinking at midnight once that some-
thing came out and the theorem came through and says, “I am a theorem,” and I didn’t
have to worry because I trusted the types, I trusted the implementation. I trusted it to the
extent that even though I'd been doing crazy things at the terminal, none of that could
affect the robustness of the system.

It’s really quite a really strong feature and has been all along, I think, with systems like
Isabel and HOL, and all those other systems that now exist. That side of it is amazingly lib-
erating because there’s a point at which you don’t have to worry.

The question then is: how do we convince the computer to tell us what our program
means?

Robin: A particular program presumably means something like: if you do this to me, then
this will happen; if you do that to me, then this will happen. Types allow you to make firm
statements of that kind. That’s where the computer does help you, the compiler helps you
via its type checker. Of course, this doesn’t have to be a decidable type checker; this could
be a type checker which, if it does conclude the program is well typed, then it certai